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1.0 INTRODUCTION

In the past few years texture has proved to be a powerful tool in the
fields of pattern recognition, remote sensing, and digital scene analysis.
The earlier works on image segmentation were based primarily on tonal or
gray level properties, mainly because they were easier to understand and
implement. The use of texture analysis as an aid to segmentation came
about because of the limited success with the earlier techniques. Also,
researchers soon realized that not only does texture play an important
role in human visual perception, but it is also intrinsically 1inkéd to
the basic structure of a scene. This last point is important, and will
be explored in more detail later.

Despite the extensive amount of research in the field, texture is
still poorly understood because a precise definition of texture is elu-
sive. There are many descriptive terms available, e.g., coarse, fine,
granulated, linear, but nothing that captures texture properties precisely.

In other words, our vocabulary for texture is only qualitative and not

quantitative. However, this has not deterred researchers in making use
of texture features that they have found suitable for their work. A
general semantic formulation which would connect different approaches is
what is lacking.

Basically, texture is an organized area phenomenon (Haralick, 1979).
When it is decomposable it has two basic dimensions. The first is for

describing the primitives out of which the image texture is composed,

e L

and the second is for the spatial dependence or interaction between the
primitives of an image texture. The first dimension is concerned with
tonal primitives or local nroperties while the second deals in the

spatial oraganization of the tonal primitives. Tonal primitives are

1




regions with tonal properties. The tonal primitive can be evaluated in

terms of its average tone, or maximum and minimum tone of its region.

g Its region is a maximally connected set of pixels having a given tonal
s property. Properties of regions can be size and shapes. The tonal primi-
b

tive includes both its gray tone and tonal region properties.

g %n image texture is characterized by the number and types of its
z primitives and the spatial organization or layout of its primitives.
The spatial organization may be random, may have a pairwise dependence
of one primitive on a neighboring primitive, or may have a dependence
of n primitives at a time. The dependence may be structural, probabil-
istic or functional (1ike a linear dependence).

These ideas of primitives and their attributes will be pursued
further, as they support the hypothesis that digital image texture is

characterized by the number and types of primitives and the spatial

relationship between these primitives. g
To objectively use the tone and textural pattern elements, the ;:

concepts of tonal and texture feature must be explicitly defined. With

an explicit definition, we discover that tone and texture are not inde- j

pendent concepts. They bear an inextricable relationship to one another

very much like the relation between a particle and a wave. There really

is nothing that is only particle or only wave. Whatever exists has both L
particle and wave properties and depending on the situation, the parti- i
cle or wave properties may predominate. Similarly, in the image context, ¥
tone and texture are always there, although at times one property can . F

dominate the other and we tend to speak of only tone or only texture.

Hence, when we make an explicit definition of tone and texture, we are

not defining two concepts: we are defining one tone-texture concept.

tizes




The basic interrelationships in the torle-texture concept are the
following. When a small-area patch of an image has little variation of
tonal primitives, the dominant property of that area is tone. When a
small-area patch has wide variation of tonal primitives, the dominant
property of that area is texture. Crucial in this distinction are the
size of the small-area patch, the relative sizes and types of tonal
primitives, and the number and placement or arrangement of the disting-
‘uishable primitives. As the number of distinguishable tonal primitives
decreases, the tonal properties will predominate. In fact, when the
small-area patch is only the size of one resolution cell, so that there
is only one discrete feature, the only property present is simply gray
tone. As the number of distinguishable tonal primitives increases
within the small-area patch, the texture property will dominate. When
the spatial pattern in the tonal primitives is random and the gray tone
variation between primitives is wide, a fine texture results. As the
spatial pattern becomes more definite and the tonal regions involve
more and more resolution cells, a coarser texture results (see Pickett,
1970).

According to Ehrich (1978), there are three problems of concern in
texture analysis. These are listed in order of increasing difficulty.

First, given a textured region, to which of a finite number of classes

does it belong? Second, given a texture region, how can it be described?

And third, given a scene, how can the boundaries between major textured
regions be established?

The first problem is one of discrimination and is in the most part

solvable. By suitably choosing the features relatively high success

rates have been achieved.

Btk e -y ath

The second deals with the structure of texture
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which is usually very complex. The use of primitives and their attributes

| ‘ is one approach to this problem. Finally, the third deals with scene
; analysis and segmentation. It is the most difficult as it incorporates
| the first two problems and the interplay between them. In addition, para-
meters for levels of texture complexity and clustering have to be established.
The human visual system succeeds with this third problem because of its
excellent grouping mechanisms as well as the use of global and semantic
information about the image. These latter techniques are difficult to imple-
ment on a computer, but future works in this field will have to incorporate
them.

In this report we would like to look at some techniques that deal with
the second and third problems mentioned above. These methods, even though

; they are powerful compared to previous technigues, are still limited. This

is because none of these processes use semantic information in the image.

and comb1ex analysis scheme. One way to do this is given in Haralick and

Incorporation of this knowledge would be the next step in a more general }

Shapiro (1979).

In order to give the methods investigated a proper perspective, we

B

begin with a review of some basic approaches to texture analysis. This
is done in Chapter 2. Chapter 3 discusses the techniques investigated.
It contains a description of the primitives used and reasons for their
selection. Also discussed are algorithms to compute these primitives.
Chapter 4 discusses some experiments that were performed. In

Chapter 5 we look at the attributes of these primitives and the general
algorithm structure to extract these properties. This section also dis-
cusses the clustering philosophy and techniques used. Chapter 6 includes
other related experiments carried out with the primitives of Chapter 3.

This is followed by conclusions and suggestions for further work.

4
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2.0 APPROACHES TO TEXTURE ANALYSIS

In the broadest sense there are two overlapping classes to texture
analysis techniques: structural and statistical. Actually all techniques
use both approaches to varying degrees. Structural usually defines the
primitives to be used. These can be descriptions of patterns in a texture
synthesis experiment or basic structural elements of an image. The statis-
tical methods are brought into play to describe the relationships between
the primitives. There are many ways to do this.

The classification of texture models given in Haralick (1979) consists
of autocorrelation functions, optical transforms, digital transforms, auto-
regressive models, textural edgeness, gray level runlengths, syntactic,
structural element, gray tone co-occurrence, and min/max extrema per unit
area. The first three deal in some way with spatial frequency. Spatial
frequency is related to texture because fine texture is rich in high spa-
tial frequency, while coarse texture is rich in Tow spatial frequency.
Thus, by working in the frequency domain texture information can be extrac-
ted. This same idea is used in measuring texture in terms of edgeness per
unit area. Fine textures have many edges per unit area while coarse ones
have fewer (Rosenfeld and Troy, 1970; Rosenfeld and Thurston, 1971). An
experiment was performed which compared the edgeness per unit area to the
approaches investigated. This is discussed later.

The structural element approach uses a matching procedure to detect
the spatial regularity of shapes called structural elements in a binary
image. In a process similar to template matching, the element is moved
across the image. The image is eroded wherever a match does not occur.

Textural features can be obtained by counting the number of cells eroded.

Crucial to this approach are the shape of the element and direction of




'1 the scan. When the structural elements are single resolution cells, the
information provided by this approach is the autocorrelation function.
By using larger and more compiex shapes, a more generalized autocorrela-
tion can be computed. The main power of the structural element approach is
its emphasis on shape, something that not many other approaches consider.
So far, however, it has only been applied to binary images (Serra, 1973). :

Autoregressive techniques involve using linear estimates of a pixel's

T

gray tone given its neighborhood. Coarse textures then correspond to
similar coefficients while fine texture areas will show a wide variance in
the coefficients (Read and Jayaramurthy, 1972; McCormick and Jayaramurthy,
1975).

Gray level runlengths method by Galloway (1974) uses gray level run-
‘ lengths as primitives and computes features in a manner similar to the

spatial co-occurrence matrix method.

N A Rl i etk 2 e

Syntactic approaches to texture deal mostly with synthesizing textures

by phrase structure grammars (Lu and Fu, 1978).

The last two: gray tone co-occurrence and min/max extrema density

are more related to the research done and thus are presented in more

T

detail.

2.1 Gray Tone Co-Occurrence

oo e T e e

Gray tone co-occurrence is the most explored technique in texture i
analysis today. First proposed by Rosenfeld and Troy (1970) and Haralick
(1971), it has proved its worth by many other researchers. The basic
reason for this js that it is a second-order statistic and thus takes into

account second-order effects. As such, this kind of measure is called a

strong texture measure.
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To quantify our descriptions, some basic definitions are needed, and

are given below.

Definition 2.1.1

Let Zr = {1’2""’Nr} and ZC = {1,2,...,Nc} be a set of row and
column indices. Llet G = {1,2,...,Ng} be a set of gray levels. Then the

digital image I, I:Zr X Zc + G is a function which assigns to each pixel

(picture element) a gray tone value. The pixel location is referred to
by an ordered pair (k,2) ¢ Zr X ZC and its gray tone is I(k,2).

A first-order statistic of the gray tones is any function of the
number of times each different gray level occurs in the image. One such
function is the gray level histogram of the image. Sometimes segmentation
can be performed on the basis of a histogram. For example, if an image
centained a set of pixel values from two different populations, the histo-
grams would be bimodal. A threshold based on the valley in the histogram
could yield the two different regions. Chow and Kaneko (1972) used this
technique to find edges in lung X-ray images. However, segmentation based
on histograms on very complex images is usually not very good.

The co-occurrence matrix, a second-order statistic, essentially
measures the relative frequency Pij of gray tone "i", occurring next to
gray tone "j". The "next to" characterizes the spatial relationship
between the primitives. It is usually specified by a distance between

primitives and orientation.

Definition 2.1.2

Let G be the set of gray tones of I and R a binary relation pairing

cells in Zr X ZC which are in the desired spatial relation, then the

co-occurrence matrix is a function P, P:G x G - (0,1) given by:




P('I,J) = #{((a,b)9(C,d)) € RJ I“r(‘g,b) = i and I(C’dl = J}

That the co-occurrence matrix contains more information than the

histogram is illustrated by the two simple images in Figure 2.1.1. While
the histograms are the same, the co-occurrence matrices are not, and the !
images reflect the different texture structure.
Based on the co-occurrence matrices, Haralick et al. (1973) computed
different features which were very successful in discriminating between
textured images. ;
Another way to use the co-occurrence matrices is to generate a tex- ]
tural transform image based on them (Haralick, 1975). This is an image
which indicates how common the texture pattern is in and around each reso-
{ Tution cell of the original image. It gives a "measure" of texture for
‘ each resolution cell. As lot of the work to be described involved gen- |
eration of texture transforms of different types, so transforms based on L
co-occurrence counts were also created for comparison. Examples of these ﬁ

are given later. First let us examine the structure of this transform.

z We wish to construct a transform image J such that the gray tone
: J(1,J) at resolution cell (i,j) in image J indicates how common the
texture pattern is in and around resolution cell (i,j) of image I.
] For analysis of the micro-texture, the gray tone J(i,j) can be a

function of the gray tone I(i,j) and its nearest neighbors.

J(1’J) = f(I(1'laJ'1)a 1(1"1:J)5 1(1‘15J+1)s 1(19\]'1)! 1(1’3)9
I("’J"'l), I(1+1’J'1)a I(1+193)s I(1+1!J+1))

Let us assume that this function f is an additive effect of horizontal,

right diagonal, vertical, and left diagonal relationships. Then:
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Figure 2.1.1.
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J(i,j) = fl(I(i,j-l), I(i,§), I(i,j+1)) (horizontal)

+ f2(1(1+1,j-1), I(i,§), I(i-1,j+1)) (right diagonal)
+ £5(1(i-1,3), I(i,3), I(i+1,§)) (vertical)
+ o (I(i+1,3+1), I(1,3), I(i-1,3-1)) (1eft diagonal)

But since we do not distinguish between horizontal-left and horizontal-
right, or right diagonal up-right and right diagonal down-left, or
vertical up and vertical down, or left diagonal up-left and left diagonal
down-right, the functions fl, f2, f3, and f4 have additional symmetries.
Assuming the spatial relationships between which we do not distinguish

contribute additively, we obtain:

3(1,3) = hy(1(5,5), 1(1,3-1)) + hy(1(3

hz(I(i,j) I(i+1,j-1)) + h2(I( i,d), I(i-1,j+1)) (right diagonal)
ha(I(i,3), 1(i-1,5)) + ha(1(i,3), I(i+1,§)) (vertical)
h4(1(i,j), I(i+1,j+1)) + h4(I( i,3)s I(i-1,3-1)) (left diagonal)

»J)s I(1,3+1)) (horizontal)

+

+

+

where the functions h1, h2, h3, and h4 are symmetric functions of two
arguments.

Since we want the h functions to indicate relative frequency of the
gray tone spatial pattern, the natural choice is to make each h the co-
occurrence probability corresponding to the horizontal, right diagonal,
vertical, or left diagonal spatial relationships.

This concept of textural transform can be generalized to any spatial

relationship in the following way and is defined below.

Definition 2.1.3

Let P be the co-occurrence matrix for an image I as defined above.

The textural transform J, J:Z, x Z, ~ (-=,=) of image I relative to

function f is defined by:
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J(r.c) = guri Z fIP(I(r,c), I(a,b))]

™s¢) (a,b) € R(r,c)

Assuming f to be the identity function, the meaning of J(r,c) is
as follows. The set R(r,c) is the set of all those resolution cells in
Zr X Zc in the desired spatial relation to resolution cell (r,c). For
any resolution cell (a,b) ¢ R(r,c), P(I(r,c), I(a,b)) is the relative
freguency by which the gray tone I(r,c), appearing at resolution cell
(r,c), and the gray tone I{a,b), appearing at resolution cell (a,b)
co-occur together in the desired spatial relation on the entire image.

The sum

P(I(r,c), I(a,b))
(a,b) ¢ R(r,c)

is just-the sum of the relative frequencies of gray tone co-occurrence
over all resolution cells in the specified relation to resolution (r,c).
1 , . .
The factor moey the reciprocal of the number of resolution cells in
the desired spatial relation to (r,c), is just a normalizing factor.
The transform described above is a resolution preserving transform.

That is, the resolution of the output image is the same as that of the

input image. While the transform image may not give rise to direct seg-

mentation, it can be an aid in multi-spectral clustering. When Haralick
(1975) included a textural transform band, he was able to improve his

classification accuracy by 11 percent.

2.2 Extrema Density

Rosenfeld and Troy (1970) and more recently Mitchell, Myers and

Boyne (1977) used the idea of number of extrema per unit area as a
texture measure. An extrema here means a relative or local minimum or

maximum gray tone. "




Rosenfeld and Troy actually used extrema found in one-dimensional
horizontal scans and as such were not true extrema. The idea is that
the number of extrema per unit area goes up as the texture gets finer.
' By marking the extrema and counting the number in a sgquare window, each
pixel cod]d be assigned a number giving a measure of extrema density.
This image could then be used to detect areas with fine or coarse texture.
Another way of using extrema density for texture discrimination was
by Mitchell et al. (1977). They chose some samples of textures like cork,

wood, water, sand, etc. The images were smoothed and extrema in hori-

‘!J'\".‘ AR

zontal scans were computed. A threshold for the size (height) of the
extrema was then selected. By varying the thresholds, the number of
extrema of different sizes in each image was obtained. Plots were made

‘ for extrema size versus the number of extrema detected for that size.
These gave characteristic curves for each of the texture types. The curves

differed in most part between textures of different types and could be Lf

used for discrimination.

Other works using extrema have been by Mitchell and Carlton (1978)
and Ehrich and Foith (1976, 1978). These will be presented in later

sections.

o e e ——
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3.0 IMAGE EXTREMA AS PRIMITIVES

The goal of our research was to study image extrema as primitives for
texture analysis. We begin with some reasons as to why these were chosen
as primitives and then give a formal definition for them. This is followed
by a discussion on reachability sets of the extrema, which is another primi-
tive that was examined. Finally we look at algorithms to determine the
primitives in a digital image.

In the last two chapters we had some examples of primitives. From
the simplest one, the pixel and its gray tone attribute, to not so intui-
tive ones such as gray tone runlengths and extrema pixels. The choice of
a primitive is crucial as it is the basic building block of the texture
model. The advantage of using a pixel lies in the fact that order is built
in and spatial relationships are easy to quantize. This manifests itself
in algorithms which require easy ordered scans of the image. However,
this geometrical ordering is also a constraint as it restricts us from
looking for primitives that were more connected with the structure of the
image than the pixel. Some investigators (Peucker and Douglas, 1975;
Toriwaki and Fukumura, 1978) in the last few years have been looking at
image structure from a topographical point of view. This is best visualized
if we represent the image three-dimensionally. Let the rows and columns be
the two horizontal axes and let the gray tone value be the height. The
image then takes on the perspective of mountains, valleys, plateaus, etc.

A gray tone extrema then corresponds to a mountain top or the bottom of a
valley. Images in this topographical view appear very complex. Figure
3.0.1 {taken from Ehrich, 1978) shows some small examples. Simple texture
patterns in the original image which would easily be processed by the eye

take on some very complex structures. From this point of view, it can be

13




Figure 3.0.1. 3-D plots of some texture samples (from Ehrich (1978)).
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seen that primitives that relate more to the basic structure of the images

would be topographical entities Tike gray tone extrema, inflexion points,

connected components. Most of these can be obtained from 3 x 3 neighborhood

operators.

Toriwaki and Fukumura {(1978) describe the structure (extrema, ridges,
etc.) of an image by two features known as the connectivity number and
radius of curvature of pixels. This link between connectivity properties
of an image and extrema strengthens the hypothesis that texture is
intrinsically tied to image structure.

Apart from the topographical structure, there is another good reason
to use extrema as primitives. They have the property of being jnvariant
under monotonic transformations of the gray tones. A monotonic decreasing
function F on an interval I means for all x, y e It x <y > F(x) < F(y).
This means that if we put the gray tones through a monotonic transforma-
tion, our extrema locations will be unchanged. This proves useful, for
example, in extracting texture from objects, parts of which lie in a
shaded area.

Another view which connects extrema to the structure of an image is
provided by an automata defined by an image. There are many different
ways to do this and the definition given below uses the four neighborhood
(vertical and horizontal neighbors) of a pixel. The transition function
is defined by the relationships between gray tones of the pixel and its

neighbors. The states are the pixels of the image.

Definition 3.0.1

An iutomaton, A, defined by the image I is the triple (Zr X Zc’ T, §),
where the input alphabet : is the set {N,S,E,W} and the transition func-

tion § is the mapping 5:(Zr X Zc) x I ~Z.x1Z.. Itisdefined as:
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(i,J) otherwise

§((1,3),N)

v

§((1,3),8) = (i +# 1, §), if I(di,§) > I(i -1, J)
= (i,j) otherwise
§((i,3),E) = (i, § + 1), if I(i,3) > I(i, j + 1)

(i,j) otherwise

(i,j) otherwise

In automata terminology, the maxima pixels correspond to inaccessible
states or generators >f primaries. The minima pixels become the set of
>‘ strongly connected subautomata. Later on we will Took at the reachability
' sets of the extrema. These are called the descending and ascending com-
ponents of the maxima and minima, respectively. The descending components

correspond to states that occur in one primary only while the ascending

- g ‘

components map to states that occur only once in the set of sources of
the strongly connected subautomata (Bavel, 1968).

The automata is a very strong mathematical tool. The analocies
between the extrema of an image to some of the basic features of an auto-
mata, provides further evidence to their worth. As we shall see later,
this relationship between an image and jits automata is exploited to

define the reachability sets of the extrema.

3.1 Definitions

Having introduced our primitives, we would like to formalize them.
This is done through a series of definitions of connectedness properties
and neighborhoods in an image. We begin with the four and eight neighbor-

hoods of a pixel.
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Definition 3.1.1

of a pixel (i,j) is the set of cells:

Ng(i,3) = {(m,n) e Z, x I, | eitherm=jand j -1<n<j+1

orn=jandi-1l<m<i+ 1}
‘The 8-neighborhood (NS) of a pixel (i,j) is the set:

Ng(1,3) = {(m,n) €Z,xZ [i-1<m

A

i+ 1 and

A

j-lf_n__.i+1}
Next we look at a connected sequence of cells and equality paths.

Definition 3.1.2

‘ Llet S = <(mo,no,(m1,n1),...,(mK,nK)> be a sequence of cells in

Z, x Zc' S is said to be a 4(8)-connected sequence if and only if:

1: (mi,n.i) € N4(8) (mi - 1, ni - 1), i = 1,2,-..,'(

Definition 3.1.3

Let S be a connected sequence of cells as above. S is called an

RV ——

equality path if ard only if:

' I(mi,ni) = I(m.i - 1, ni - 1), 1 = 1,2,-..,'(

An equality path is a connected sequence in which all pixels have the
same gray tone. No neighborhood was specified above. Unless otherwise
stated, we will assume an eight neighborhood, N8’ or N from now on.

An equality path allows us to define the flat of a pixel.

17
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Definition 3.1.4

The flat of a pixel (r,c), denoted by F(r,c) is set of pixels:

F(r,c) = {(m,n) | there exists an equality path from (r,c)

to (m,n)

The flat of a pixel may be the pixel itself. A1l pixels have flats
and these are maximal in size as given by the definition above. A flat
is then a maximally connected region with the same gray level.

Given the flat of a pixel we can talk about the boundary pixels in
the flat. A boundary pixel of a flat is one which has at least one neigh-

bor which is not part of the flat.

Definition 3.1.5

Let F(r,c) be the flat for pixel (r,c). The set of boundary pixels
for the flat denoted by FB(r,c) is the set:

Fg(r.c) = {(m,n) e F(r,c) | 3(p,q) e N(m,n) and
(P.q) £ F(mt)}

The boundary pixels of a flat allow us to determine if the flat is

a relative extremum or not.

Definition 3.1.6

Let (r,c) be a pixel in Zr X Zc‘ F(r,c) is a relative maxima (minima)

if and only if for all (p,q) ¢ FB(r,c):
I(p,q) > (<) I(m,n),V¥(m,n) e N(p,q)

The extrema or relative extrema are usually single pixels. However,

if the flat consists of more than one pixel, we call the entire set an

extremum of the image.
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3.2 Reachability Sets

In this section we introduce an extension of the image extrema.
These are called the reachability sets or descending/ascending components
of the maxima/minima. Essentially the descending component of a maxima
is all the cells that can be reached in non-increasing gray tone paths.
Correspondingly, the ascending component of a minima are all the cells
that can be reached in non-decreasing gray tone paths. In the three-
dimensional perspective of the image of Section 3.0, this amounts to
traveling down from the mountain tops or going up from the valleys.

The computation of the ascending/descending components, reachability sets,
or transitive closures actually is a spatial clustering on the image.
It is in this framework that the following discussion is presented.

Later we will amend it to suit our needs, i.e., to get reachability sets

which will themselves be used as primitives.

The discussion below restricts itself to descending components of
maxima as they are intuitively easier to comprehend. A simifar argu- g
ment can be presented for ascending components of minima with the defini-
tion of the relation R below adjusted. The next two sections look at the

transitive closure of a cell and how to compute it.

3.2.1 Definitions :
Spatial clustering can be thought of as grouping together units

which bear a similarity to each other and in addition have some spatial

relationship. For mdgt cases, the formal definition of the cluster and

the algorithm which generates it go together. In this and the next few

sections, we look at this description.
We begin with the definition of the city block or Diamond distance

function.
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Definition 3.2.1

Let o be a digital distance function defined on digital image. o

is called the Diamond or City Block distance function if:

9((i’j)’ (k,m)) = h = k’ + IJ - ml

(1,3)s (kom) € Z, x 2,

In most of what follows, we use this distance function to illustrate
the algorithm. As is discussed later, the algorithm is not restricted by
this distance function. It just happens to be one that is easy to visualize.

To characterize the clusters we define a binary relation R € (Zr X Zc) X

(Z, x Z.) by:

R = {((1,4), (,m) [1(1,3) 2 Tlam), o((1,3)s (ksm)) < o}
where
1 (1,3)s (kom) & 2, x Z

p = the digital distance function described above,
E defined on Zr X Zc

For now we take 6 = 1. The relation R then takes on a meaning that
is readily discernable. For 6 = 1, R consists of ordered pairs of cells
such that going from the first to the second cell takes one step and the
gray levels are non-increasing. This description may be viewed as a path
of length 1 from the first to the second cell. 8 < 1 or 6 = 0 implies a
path of length zero, e.g., the element ((i,j), (i,j)) € R. In general,

a path of length n between two cells can be defined as below.
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Definition 3.2.2

Let (xg.yg)s (xpyp) € 2. x I Let <(xgayg)s (x1uyq)...(x,.y,) > be
a sequence of cells such that for all i ¢ {1,2,...,n}, ({x; _ s ¥5 _ 1)s

(xi,yi)) e R. Then the sequence <(x0,y0),(x1,y1)...(xn,yn)> is called a

path of length n from (xo.yo) to (xn,yn).

The definition of a path here is different from the equality paths
of the last section. The modification here is with regard to the non-
increasing of gray levels as we proceed down the sequence. This will be

discussed further later.

Definition 3.2.3

The transitive closure of the relation R, denoted by RT, is defined

as:

--1

RT = {J R', where R' = RoRo...oR

i=1 _—
i times

We have seen R consists of ordered pairs of cells which are end points of
paths of length 1. ReR then consists of ordered pairs of cells of (Zr X
Zc) X (Zr X Zc) which are end points of paths of length 2. Thus,
RoRe,..oR (i times) consists of ordered pairs of cells which are end
points of paths of length i. The union of all these sets defines the
transitive closure of R.

ke are interested in the transitive closure or reachability set of
a cell. This is defined in an analogous manner to RT above.

Let R{(m,n) = {(i,3) | ((m,n), (i,j) € R}¥. We note that the City
Block digital distance function as used in the definition of R for 6 = 1
gives for R(m,n) the four-neighborhood of (m,n) (the east, west, north,
south neighbors of (m,n)), if they are reachable, along with the cell

(m,n).
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| Definition 3.2.4

The transitive closure of the cell (m,n) ¢ Zr X Zc is defined as:

R (m,n) = U Ri(m,n) where
i=1

RY(mun) = ((1,3) | ((mn), (1,4)) ¢ R} (1,3) ¢ Z, x Z

o

Thus, RT(m,n) is a sub-image of Zr X ZC. Rl(m,n) = R(m,n) consists of

1 (m,n) and those cells which can be reached from (m,n) in one step, i.e.,
] there is a path of length 1 from (m,n) to those cells. Rz(m,n) consists
of (m,n) and those cells which can be reached from {m,n) in two steps,

or there is a path of length 2 from (m,n) to those cells. In general
Ri(m,n) consists of (m,n) and those cells reachable from (m,n) in i steps
or those cells which 1ie a path length i away from (m,n). So RT(m,n)

!
consists of all cells reachable from {(m,n) or those cells such that a h

path exists fram (m,n) to them.

The clusters we wish to determine in an image are defined in terms

of RT(m,n). Given a cell (m,n) we wish to determine the closure of (m,n).

This may be called a cluster. However, we want these clusters to be

maximal in size, thus generating from the image maxima. Borrowing a

term from automata theory we will call these maximal clusters primaries.

They are defined formally as follows.

Definition 3.2.5

Vg Zr X Zc is a primary of Zr X ZC if and only if:

(1) v = RT(m,n) for some (m,n) e Zr X Zc’ and

(2) If (i,d) € Z, x Z_ and VS RT(i,3), then V = RT(1,5)

y
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3.3 Algorithm to Compute Transitive Closure of a Cell

First we present the theoretical aspects of the algorithm. To do this

we introduce some notations:

Let a(i,§) = min {k|I(i,k) < I{i, k+1) <. .. <I(i,j)}
k
8(1,3) = max {k|I(i,3) > I(i, j+1)>. .. >1I(i,k}}
k
a{i,j) and g(i,j) are then the column coordinates of the last cell reach-

able, when traveling horizontally left and right, respectively, from (i,j).

Similarly, let

v(i,3) mln (kT(k,3) = Ik + 1, §) <. . . < I(3,5)

and

§(1,3) = max {k|I1(i,5) > I(i + 1, 3) > . . . > I(k,j)}
k

v(i,J) and &(i,j) are row coordinates of the last cell reachable when
traveling vertically up and down, respectively, from (i,j).

From the definitions above, the following always hold:

a(i,j) < J

B(i,3) > j
T -(1)

6(i,3) > i

In terms of these end row and column pointers we get two sequences of
cells. A1l cells reachable from (i,j) traveling horizontally or vertically,

j.e., the sets: 1
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H(1’J) = {(1,")!0.(1,,]) = nx 8(1’3)}

v(1’J) = {(man)]Y(i)»j) = 6(1’-])}
From the definition of these two sets and (1) above, it follows:

(i,3) € H(i,j) and
-(2)

(i,d) € V(i,j) always
Thus, H(i,j) is the set of all points which can be reached from (i,j)
going horizontally in both left (west) and right (east) directions.
V(i,j) is a similar set for the vertical paths from (i,j) going up
(north) and down (south).

The algorithm consists of finding all these vertical and horizontal
sequences in an iterative manner. For this purpose we define a sequence
of sets AI’AZ""’An as follows:

{{(p,q)} where (p,q) ¢ Z_ x Z. is the cell whose closure
we wish to compute and

H(i,5)
*1 (i,j)gl\n

= V(i,j)
m)LeJA,, -

Thus, by the above definitions and (2) it follows that Ai sA; 1° for

all positive integers 1.
Before we prove a Lemma relating the sequence of sets Al’AZ""’An
to RT(p,q), a special note should be made regarding paths in a digital

image as defined in Defintion 3.2.2. Under the constraints of the form




of o (City Block distance function) and & (8 < 1), a path between two
cells in Zr X Zc’ consists of alternating horizontal and vertical sub-
paths only. This is because the definition of p and 8, allow at most only
the two vertical and two horizontal neighbors of a cell {(m,n) in R(m,n).
Thus, any cell in a path in Zr X Zc is in either a horizontal or a vertical
relationship to its predecessor (we are using the four-neighborhood here).

We now prove the above-mentioned Lemma.

Lemma 3.3.1
A, = R(p,q)

Proof

Let (i,3) ¢ R'(p.,q).

Then there exists a path from (p,q) to (i,j) but for any resolution
cell to be in such a path, it must be in either a horizontal or vertical
relationship to its predecessor.

Thus, the path can be broken up into alternating horizontal and verti-
cal oriented subpaths. The first horizontally oriented subpath gets picked
up in A2. The first vertically oriented subpath gets picked up in A3.
Eventually all the subpaths are included in A . Therefore, (i,j) ¢ A_ and
so RT(p,q)  A_.

Let (i,j) € A, By defin{;ion of A_, it must include all resclution
cells on all paths made up of alternating horizontal and vertical oriented
subpaths of RT(p,q). Thus, (i,j) € RT(p,q) and so A_< RT(p,q). Thus,

A, = R(p,q). '

The structure of the algorithm is as follows. Start with the cell

(p,q) the set A1 whose closure we wish to get.: In the first generate AZ’

or all cells which can be reached going horizontally from (p,q).

25
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In the next scan generate A3 or all cells which can be reached from
each cell in A2, traveling vertically. Continue scanning generating
A4,A5,... inis will give us RT(p,q).

By the L:mma, we know that we will get RT(p,q) in an infinte number
of scans. However, that is not practical or for that matter, not even
algorithmic. In practice, for images of finite size, the number of scans
necessary, is finite. We let the procedure terminate when no new cells
were added in the last scan. It remains to show that this will always
happen and hence we will always terminate in a finite number of steps.
Also, when we do stop we have got exactly RT(p,q). The following Lemma

shows this.

Lemma 3.3.2

Let Al’AZ""’An be a sequence of sets as defined above. - Then:

(1) There exists a positive integer n such that

A=A =, ..=A

(2) A

[}
=

n

Proof
Since Ai = Ai + 1 for any positive integer i, the total number of

cells in Ai’ for each scan cannot decrease.

If the number of cells absorbed is always increasing in successive
scans, then eventually the whole image will be exhausted, since it is of
finite size. Further scans cannot add anything new, thus part (1) holds
and we terminate the procedure. (This is the case when the whole image

belongs to RT(p,q)).
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n+ 1" An. There were no new cells

Suppose then for some scan n, A

added. Either An + 1 Was a horizontal scan or a vertical scan. (Hori-
zontal scan means a scan in which we were looking for horizontal paths).

Llet A be a horizontal scan. Then An +1 implies there were

)th

n+1

no new horizontal paths added in the (n + 1 scan. Thus, the (n + Z)th

scan, (a vertical scan) cannot absorb any new members, since no new cells
were obtained in the previous horizontal scan, which would have generated

new vertical paths. And if there were any vertical paths from the cells

they would have been picked up in the nth scan. A similar

argument holds for the next (horizontal) (n + 3)th scan. No new members

in An + 1

can be generated.

If A were a vertical scan, a similar discussion, with the

n + 1

words horizontal and vertical interchanged, would give that successive

scans would yield the same sets.

Thus, An = A = A = A = ... A

implies An = A n+ 2

n+1
where n is a positive integer.

n + 1

From Lemma 3.3.1 we have RT(p,q) = A_and by part 1 of this lemma

- T -
A, = A, SoR (p,q) = A,

The two lemmas thus constitute a proof for the algorithm.

In the implementation of the algorithm one has to keep track of some
details like which cells have been included already or which cells should f
the paths be checked from. It is quite redundant to generate paths from
cells more than once, as we would gain nothing new. These details may be

kept track of by using two markers. Thus, if the horizontal path from a

cell has been generated in a scan, it should be marked "horizontally-done."

It may thus be skipped over in later horizontal scans. These markers can
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then be used in generating path from only new cells gotten in the previous
scan. For example, new vertical paths are generated from those cells which %
are marked "horizontally done" by the previous scan, but not "vertically
done."

At the end of the generation process those cells marked vertically
T

and horizontally done will belong to R (p,q). Some examples will make

this clearer.
We present two examples with discussion as to how the algorithm acts :
on them. They have been simplified to enable better visual understanding. f
Only one primary per picture is discussed (usually there are many more) :
and we ignore gray tones, assuming that the shaded areas are the primaries
(closure) of mountain tops at X. B
In Figure 3.3.1 we have a simple blob primary as marked out. The ]
generator is X. Here A1 = {X}. In the first scan we will generate the
horizontal path (A2 = {set of cells between A and B}) from X, marking

every cell in this path with, say "-", as "horizontally done." In the

T e
s “iar A e

second scan we will generate vertical paths only from cells marked with
an "-". All these cells (i.e., set A3) in the vertical paths will be
marked "|" to denote "vertically done." At this stage, cells on the line
AB will be marked "+" as both horizontal and vertical paths have been
generated from them. A3 then will consist of all points in the shaded
area except cells C and D as they have not been reached yet. The third

scan (horizontal) will generate A, which shall include C and D. From

AT AR S o ITPIROR

|l|ll

this scan we will generate horizontal paths from cells marked with
only. Two of these paths will include C and D. At the end of this scan
all cells in the primary would have been gotten and all except C and D

will be marked "+". C and D will contain only "-" marks, and will need
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Figure 3.3.1. Example of primary generation.
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Figure 3.3.2. Example of primary generation.
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to have their vertical neighbors checked for paths in the next (fourth)
scan. This, of course, will aot give us any new cells and C and D will
be marked "+". The whole primary has been generated and the process will

stop here, A4 = A5'

What determined the value n = 5 here? We note, if it was not for
and D there would have been one less scan. We need at Teast three scans
here since starting with the horizontal direction, three alternating
(horizontal-vertical-horizontal) subpaths are needed to reach C and D.
The fourth scan just determines that we have all the cells.

The number of scans needed is the minimum number of alternating
* subpaths needed (plus one) such that all the cells are reached. This
becomes evident on examining Figure 3.3.2. It looks quite pathological
but serves to illustrate the problem.

| Here we have the generator of the primary, X. (A1 = {X}). In the

first (horizontal) scan we will get A2 = {cells on the 1ine AB}. The
second (vertical) scan will yield in addition to Ay, Ay = Azt,J{ce11s C
and D and cells on vertical line BE}. The next horizontal scan will yield
in addition to what we have gotten the cells on line EF. Thus, the pat-
tern is as follows. Here we let {RS} denote cells lying betweeen and

including the cells R and S:

30




.1:"" ¥

L
o voltni.. .-

AL = (X}
> = AJU(AB) = {AB}
3 = A, U(C,D} U (BE}
Ay = Ay ULEF}

5

Ac = A4\J{FG}
A6 = AS\J{GH}
A7 = A6lJ{HI}

g = AgULIK]

A
A

Ao = AgUIKL}Y
Ajp = Ajguitm

Ayy = Ay UINPIU {10}
Ay3 = A ulQ)

A]4 = A]3 and the procedure stops.

Here we needed 13 scans since a minimum of twelve alternating subpaths
are needed to reach Q from X.

This may seem like quite a Tot, but in most other methods to generate
transitive closure usually more than 13 scans would be needed. The reason
being most other methods look for paths in only one direction per scan.
This algorithm looks at two directions in a scan (either Teft-right or

up-down), which gives it more power in the general case.

3.4 Algorithms

In this section we will 1nok at some more algorithms. The first two
of these compute the extrema of the image. Then follows an algorithm to

give each extrema a unique label. The last is another algorithm for

reachability sets. The algorithm of Section 3.3 computed the descending
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component of one maximum only. In general, the descending components of
different maxima overlap and thus if the entire component is desired,

each has to be computed separately. We use a modified version of the
reachability set of an extremum. This set consists of those pixels

which are reachable by the extremum and no other. In otherwords, if a
pixel is reachable by two maxima (or minima) it is considered in a special
overlap region and ignored. These sets are called the unique reachability
sets. Thus, the result of the last algorithm on the image containing the
maxima, is another image with the maxima grown out over their unique
descending components. By definition the ascending components of the
maxima are the maxima themselves. A similar discussion holds for the
minima.

In order to maintain consistency and allow for comparison, the
examples presented are the result of applying the various algorithms to
one image, designated as M4A. This is a 128 x 128 section of the fourth
image provided by ETL. The "A" stands for the first subsection examined
from this image. The two bands are shown in Figure 3.4.1. The first is ?
the radar image while the second is the aerial photo image. The section ;
is of a mostly residential area with a trailer court at the bottom left ;
and a plain field at the top left. It was chosen for its three sample ;
textures. For most of the processing the aerial photo was used as it had }

less noise.

The usage and documentation of the algorithms is described in the
Appendix. Basically they have all been set up as image operators. That
is, all the subroutines and procedures for each algorithm were put together
in a mini-package. This resulted in an operator or command which was

applied to the image. Each operatdr takes in one or two images as input
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Figure 3.4.1a. Band 1 of MAA - Radar Image. Image size
128x128.

: }
?

3 Figure 3.4.1b. Band 2 of MA - Aerial Photo. Image size

j 128x128.
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and generates a resulting output image. This output image can be operated
upon by other commands as necessary.

There are four commands - MRKNX, MNMX8, LBLCT, REACH. The.first two
compute the extrema of the image. LBLCT is used to label each extrema
region uniquely, while REACH computes the unique reachability regions.

The first, MRKNX, stands for mark local minima and maxima pixels.

It takes in a gray tone image and outputs an image in which each pixel

is marked as a minima, maxima, flat or transition, as determined by apply-

j ing a 3 x 3 window over each pixel. It is a one pass operation. The

output values do not represent true relative extrema as only a 3 x 3 window
for each pixel is examined. The pixel is marked 1 or 2 if it was the minimum
or maximum of the nine cells (itself and its eight neighbors). It is given
a value 0 (flat) if all nine pixels had the same value. Finally, if it is

‘ none of the above, it is marked as transitionary and given a value 3.

In the example below, Figure 3.4.2, the center cell will receive the

various labels.

%; 3 (5|2 22 |1 5|5]|5 25'5,

e

- 4|17 2|53 5|55 23 4
6|84 5|43 5/5/5| '2({3 4|
Minimum = 1 Maximum = 2 Flat = 0 Transitionary = 3
Figure 3.4.2. Labels assigned to the center pixel by MRKHX.

{
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The MRKNX operation results in an image which serves as "seeds" for a
region growth process by the iterative MNMX8 operator.

The commands MNMX8, LBLCT, and REACH, while they do different things,
all have the same basic structure and scan the image by applying a 2 x 2
window template. The effect of these programs is to apply a rule to the
cell pairs defined by the template on the image, until all these pairs
satisfy some relation. The scan increment is one cell at a time and the
2 x 2 window covers all adjacent cell pairs as is illustrated below.

Figure 3.4.3 shows the scan template. The arrows indicate which pairs of
cells are compared. The template and scanning work on the eight neighbor-
hood of a pixel.

There are four comparisons made for each window positioning. When
the template is passed across the image in one pixel increments, all of
the adjacent (eight neighbors) of every cell in the image are covered during
each scan of the image. This can be seen in Figure 3.4.4. Thus, the center
pixel is compared to each of its neighbors. For MNMX8 and REACH the w{ndow
is moved from left to right and right to left as well as top to bottom and
bottom to top. For LBLCT the scan goes horizontally and from top to bottom.
Each scan results in propagation of labels, markers, etc. The scanning
iterations continue until no change is recorded. This results in the
output image for the command.

MNMX8 is a recursive filter which uses the original gray tone image
and the output of MRKNX to label extrema. Labels (0,1,2,3) in the image
from MRKNX are propagated till all flats are eliminated. The propagation
rule on a pair of cells for a few labels of the marked image is given

below.
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Figure 3.4.3.

Figure 3.4.4.

Scan template for MNMX8, LBLCT, and REACH operators. Four
cell-pair comparisons are made for each template positioning.
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A1l eight neighbors for pixel A are covered once by moving
the template across one column and down one row.
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Propagation need only be performed if the two labels are not the same
and the corresponding two gray tones are equal.

Let the two cells be x and y with the marked labels Lx and Ly. We
have three cases to examine for when Lx # Ly and the gray tones of x& y
are the same:

(a) Either L, or Ly equal 0 and the other non-zero (1,2,3).
Output is the non-zero label propagated into the 0
label cell.

(b) Either Lx = 1(min) and Ly = 2(max) or vice versa.

Qutput in both cells get marked 3 (transition)
as a region cannot be both a minimum and maximum i
at the same time. :

AT v iy

(c) Either L, =3or Ly = 3. The output is 3 for both

cells regardiess of the other value. The transi-
tion label is propagated since if a region is known
to have a transition label, all its cells must be
marked transition also.

The image is iterated with the scanning template till no more propa-

gation is possible. The propagation must cease as in each iteration the

number of pixels marked 0, 1, or 2 never increase while the number of
pixels marked 3 never decrease. Unless the image is pathological (i.e., f
all pixels have the same value), there will be at least one maxima and one o4
minima. The output image contains no zeros. The cells marked 1 and 2
represent the true relative minima and maxima.

Figure 3.4.5 show these for M4A. The second photo image was used to 3
determine both the local 3 by 3 mark labels as well as for the propagation
of these labels. The minima are red and the maxima green, though on printing

the latter appear black.

In order to use either the minima or maxima, each one has to be labeled
uniquely. This allows for both property generation as well as the genera- !
tion of the reachability sets. The LBLCT command does this for us. If

] the maxima were specified, then it examines each maximally connected set
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Figure 3.4.5a. Local {(3x3 window) maxima (green), minima
(red), transitionary {(yellow) and flat (black)
pixels. Result of applying the MRKNX
operator. (Shown at a larger scale.)

Figure 3.4.5b. Relative minima (red) and maxima (green).
Result of applying the MNMX8 operator.
(Shown at a larger scale.)
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of pixels marked 2 and assigns unique labels to each set. The pixels not.
marked 2 are ignored or treated as background markers.

LBLCT achieves its labeling by using the scanning template described
previously. It scans horizontally and goes from top to bottom of the -
image. It also uses a linked 1ist and counters to keep track of the number
of regions encountered. The propagation function for the labels of a pair
of cells in the output image is described below.

Let the two pixels be x and y. Lx and Ly are the labels in the output

image. M is the mark value of cell y in the input (result of MNMX8) image.

y
The discussion below is for labeling maxima, i.e., cells for which mark

value is 2.

Initially the labeled image is all zero. A counter which maintains
the current label count is initialized to 1. A linked list for the labels
is set up. Each entry is initialized to point to itself, e.g., list(5) = 5
states that pixels that have label 5 are connected to region number 5.

At a later stage this may change to say list(5) = 3. This means that
pixel labeled 5 should have the same label as those for region number 3,
as pixels with labels 3 and 5 were once assumed as separated but turned
out to belong to the same region. At the end of scanning the image, the
smallest Tinked label from the 1ist is chosen and the output image is
relabeled to generate the unique labels.

If cell y has a mark.value of 2, it gets labeled one of three ways
in the output image: :
(a) If Ly # 0, Ly is set to the label that is linked

to the linked 1ist. It 1is possible that the result
of the relabeling will produce the same result as
before, as all labels start out being linked to
themselves. After this relabeling L, is

examined. If L, # O then list (Max(Lx,Ly) =
M1n(Lx,Ly). The larger label is linked to the
smaller one. If Lx = 0 no action is performed.
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(b) If L

= 0 then if L, # 0, Ly =L

Y X'
(c) Case for both L, = Ly = 0. Ly then gets
set to the next new label.

Figure 3.4.6 shows the uniquely labeled extrema for M4A.

The REACH operator generates reachability set for either the minima
or maxima. Input is the gray tone image and a uniquely labeled extrema
image. The cells not belonging to any maxima have been given a special
label P for background. The scanning is done as before. The propagation
rule is applied if the label of the two cells are not the same. The rule
for descending components is as follows. Let the gray tones and labels
of the first and second cells be x, y, and Lx, Ly.
(a) If (x < y) then no propagation
(b) If (L,
(c) If (Ly y

QVL is the overlap label which indicates that a pixel is reachable

0) then no propagation

0) then L = Ly otherwise Ly = QVL

from two maxima. A similar rule exists for the ascending components.

Figure 3.4.7 shows the reachability sets for the extrema of M4A.

Next we look at some processing with these and other algorithms. E




(a) Maxima (b) Minima

Figure 3.4.6.

| ' (a) Descending Components (b) Ascending Components

Figure 3.4.7.

Uniquely labelled Maxima and Minima of M3A.
Result of applying the LBLCT operator to the
maxima and minima pixels respectively of
Figure 3.4.5b.

ey s

Descending components of the Maxima and
Ascending components of the Minima pixels.
These are the unique reachability sets of M4A,
as a result of applying the REACH operator.
The overlap region is black.




4.0 EXPERIMENTS WITH EXTREMA DENSITY

This chapter discusses experiments carried out with extrema density.
Essentially this is a measure of number of extrema per unit area. Exper-
ments were done using either maxima, minima, or both. Density images were

also generated from the reachability sets.

In Chapter 2.0 we mentioned two investigations which used extrema
density for texture analysis. Their extrema were computed along horizon-

tal scan lines only and were not true extrema. A more recent work which

achieves image segmentation using extrema is by Mitchell and Carlton (1978). §
In addition to using just frequency of extrema, they also make use the {
height attributes of extrema, which we discuss in the next chapter. Their
extrema are computed by combining horizontal and vertical one-dimensional
scan operations. An extremum in one-dimension is found if the gray tones
rise or fall beyond preset levels (heights). Thus, these extrema alsc

differ from the relative min/max presented in the last chapter.

Images are generated in which each pixel is given a count of the num- !

ber of extrema in a 60 x 60 window surrounding it. Different images with
different thresholds of extrema height are generated. These are then
used together in a multi-spectral clustering algorithm for seamentation.

Hierarchical segmentation is achieved by using smaller window sizes and 3

segmenting within the large regions obtained in previous iterations. They
achieved fairly good results with this method.

As in the last chapter, all images presented here are the result of
processing image M4A of Fiqure 3.4.1 to different degrees. A large number
of images were generated and examined. In the next few sections we

summarize the experiments and results.
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4.1 Extrema Density

The problem with simply counting all the extrema in the same extrema
i plateau as extrema is that extrema per unit area is not sensitive to the
difference between a region having few large plateaus of extrema or many
simple pixel extrema. One solution to this is to count each extrema
plateau once. This involves locating some central pixel in the extrema
and marking it as the extrema associated with the plateau. The problem
was solved in the experiments performed by taking a weight "W" and assign-
ing a value W/N for each pixel in the N-celled extrema. Thus, if the weight
was 100, each single celled extrema would get a value 100; each cell in a
two-cell extrema would get a value 50; the three cells in a three-cell ex-
trema would get values 33, 33, and 34; and so on. To achieve this the
size of each extrema region had to be determined. The algorithm for that

is discussed in the next chapter under extrema attributes.

The choice of the weight is arbitrary as long as it is larger than
the size of the largest extrema. For our experiments a weight of 255 was
i chosen for no other reason than the fact that no more than 8 bits of sig-
nificance would be required to store image values. Higher weights would
have resulted in larger number of bits and would have used more disc space.
In order to obtain density images, the image with weight-distributed
extrema was filtered repeatedly. The filters applied were averaging box
filters, of window sizes 3 x 3 and 5 x 5.

The result of applying a 3 x 3 box filter once is to replace the gray

tone of a pixel by the average of the gray levels of its neighbors and
itself. This is a Tow pass filter operation and results in a smooth image

5 ' or defocused image.




The filter can be represented as a window as shown in Figure 4.1.1.
Each cell has a weight of 1, and the resulting sum for a pixel is divided
by the sum of the weights, 9. One iteration does not do much defocusing.
Either we can use a larger window like 10 x 10, or 20 x 20, or apply a
small window repeatedly. Using a large window has a drawback. The result-
ing image is streaked. This is a consequence of giving all the cells in
the large window the same weight. It makes more sense to weigh the center
cell more and reduce the weight as we go towards the edges of the window.
This is exactly what results in apply a smaller filter repeatedly. The

rest of Figure 4.1.1 shows the distribution of weights when a 3 x 3 window

M P A (APO Dse

is applied up to 5 times. The effect of applying two 3 x 3 filters is to
apply the filter "332" once. The size of filter is larger but the weight- f
ing is no longer uniform. Figure 4.1.2 shows the corresponding filters for
re..ated 5 x 5 jterations.

Let us examine this in the general case. Let the size of the filter
be S x S. We will assume S to be odd and can represent it as S =2m + 1,
m is an integer. If we apply this filter n times, the resulting filter
- will be (2nm + 1) x (2nm + 1) in size, and the total weight associated with
‘the filter is s27.

In the next set of figures we have the results. Fiqure 4.1.3 shows

the weighted maxima image of M4A and the results of applying five 3 x 3

LT

and five 5 x 5 box filter operations. The density effect starts to come

about the third application of the filter. WNe could have gone on beyond
five iterations, but did not. In these density images a brighter area
corresponds to higher texture density or finer texture. The dark areas
correspond to lower texture density or coarser texture. These should be

compared to the original M4A photo image of Figure 3.4.1, for texture b
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Figure 4.1.1. Weighting of pixels achieved by repeated applications of
2 3 x 3 window.
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(a) Maxima pixels weighted.
Each region was given a weight of 255.
The different colors correspond to maxima
of different sizes. 536 regions.

(c) Two 3x3 window filters (h) Two 5x5 window filters

Figure 4.1.3. Density images from Maxima pixels.
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(f) Five 3x3 window filters (k) Five 5x5 window filters

Figure 4.1.3 ( continued )
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measures. The fine texture of area at bottom up corresponds to the trailer
court. The discontinuity in the rows of the trailer court is maintained
if not emphasized in the density images.

Figure 4.1.4 shows the five 5 x 5 window filtered image level sliced.
This shows the areas of different texture densities a little better.

On closer examination in this and pictures of Figure 4.1.3, a block-
ing or contouring effect may be discerned. This is owing to the integer
truncation in the box filtering.

Figure 4.1.5 shows the weighted minima regions and the density images
after five 3 x 3 and 5 x 5 iterations.

Figures 4.1.6 and 4.1.7 show the corresponding results of the above
procedure as applied to the descending components of the maxima and the
ascending components of the minima. The resulting density images are
smoother than those of the corresponding extrema as the weight was dis-
tributed over more cells before the filtering began.

In Chapter 2.0 we had mentioned a texture transform procedure based
on spatial co-occurrence matrices. The result of applying that to a
quantized version of M4A is shown in Figure 4.1.8. This was done for com-
parison with the density images which can also be considered as texture
transforms. The image in Figure 4.1.8 was generated assuming f in Definition
2.1.3 to be the identity function. The results do not match up over the
entire image, indicating the two methods emphasize different texture attributes.

Antoher experiment was run to compare these results with the idea of
using edges/unit area as texture measures. The edge image was obtained
by applying the quick Roberts gradient function to the M4A-photo image. For

a pixel (i,j) the quick Roberts gradient value is given by R{i,j):
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Figure 4.1.4.

Weighted Maxima density image after applying a
5x5 averaging window five times and level ¥
slicing. '
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! (a) Minima pixels weighted.
Each region was given a weight of 255.
The different colors correspond to minima
of different sizes. 511 regions.

(b) Five 3x3 window filters (c¢) Five 5x5 window filters

Figure 4.1.5. Density images from Minima pixels.




(a) Descending Component pixels weighted.
Each component was given a weight of 255.
The different colors correspond to components
of different sijzes. 536 regions.

(b) Five 3x3 window filters (c) Five 5x5 window filters

Figure 4.1.6. Density images from Descending Components.
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(a) Ascending Components weighted.

Each component was given a weight of 255.
The different colors correspond to components

(b) Five 3x3

Figure 4.1.7,

of different sizes. 511 regions.

window filters (c) Five 5x5 window filters

Density images from Ascending Components.
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A Textural transform of M4A based on spatial

Figure 4.1.8

occurrence matrices.
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R(1,) = JI(3,3) - IG + 1, §+ D) + |I(i + 1, §) - I(i, § +1)|

This image is shown in Figure 4.1.9. To get the edge density image
five 3 x 3 and 5 x 5 box filter operations were applied. These results
are given in Figure 4.1.10. They compare quite well with the min/max
density images.

Finally, texture density images were generated using both the minima
and maxima. The full extrema image was obtained by relabeling the 2(max)
label from the result of MNMX8 to the 1(min) label. Thus, all extrema
were then marked by 1. A LBLCT operation was performed to give each
maximally connected region a unique label to allow for the distributed
weight procedure to be applicable. A point that was noted in this pro-
cess was that the number of extrema obtained this way was not the sum of
the relative minima and maxima. There were 511 minima and 536 maxima
regions in M4A. The resulting extrema image above had only 976 regions.
The difference is because in the process of labeling twos to ones, min
and max extremum which happened to be adjacent (i.e., in each other's
eight neighborhood) were merged into one region.

The weighted extrema image and corresponding density images are
shown in Figure 4.1.11. These are similar to the min/max density func-
tions as may be expected.

On a visual level the results seemed to capture texture pretty well.
In the next section we will look at another method used to analyze the

results.

4.2 Autocorrelation Tests

It was hoped that the histograms of the extrema density images would

show three or four well-defined peaks corresponding to the three types of
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Figure 4.1.9 Roberts Gradient image of M4A.

(a) Five 3x3 window filters (b) Five 5x5 window filters

Figure 4.1.10. Edge density images after applying averaging
filters to the gradient image.




(a) Extrema (minima & maxima) pixels weighted.
Each region was given a weight of 255.
The different colors correspond to regions
different sizes. 976 regions.

(b) Five 3x3 window filters (c) Five 5x5 window filters

Figure 4.1.11.

Density images from Extrema pixels. . F
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areas observed on the image. I[f this was so, then segmentation could be

achieved based on level slicing on the histograms. In general, histograms
of images with a small amount of filtering showed a number of sharply
defined peaks. Histogram of images with high number of iterations had one
large peak and some shallow peaks. None of these promised good direct
segmentation. However, the histogram of the image which had been filtered
three times with a 3 x 3 filter did have four peaks and seemed the best
candidate for examination. Figure 4.2.1 shows this histogram,

In order to investigate the properties of the density measures, an
experiment was performed in which the density images were quantized down
to 2, 3, 4, and 5 Tevels. The resulting images were segmentations of the
original based on extrema density. To examine how good the segmentations
were, statistical properties of areas on the original image, defined by
the segmented images, were obtained. The statistical properties were
essentially autocorrelation values over the different areas. This function
is discussed next.

.The autocorrelations computed did not contain cross product terms
involving pixels from two different contiguous regions of a category. The
spatial correlation for one category, and lag(L) is the ordinary correla-
tion coefficient for two sets of measurements on a subset S of pixels in
the category. This is described below.

Consider a maximal segquence of pixels in a row of the segmented
image which belong to the same category. The first and last pixels in
the sequence are considered to be on the boundary. If the sequence is N
long, then for a given lag L, the right-most (N - L) pixels are ?n the
subset S. S consists of all such pixels in all the connected sequences

of the category. Note that the size of S decreases as L increases. The
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Figure 4.2.1. Histogram of extrema density image after three 3 x 3 window
averaging filters.
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corresponding gray tone in the original image for the pixel in S gives us
the first measurement for the correlation count. The second is the gray
tone of the pixel L columns to the left. We define the spatial autocorre-

lation a(L) on connected sequences which are run lengths along rows.

Definition 4.2.1

Let there be K connected sequences with length greater than L in
a category. Let the size of each sequence be Ni' Also, let r be the
image row for the i~th sequence and € be the column position in the image
for the first pixel in sequence i. The spatial autocorrelation function
for lag L is given by:
s + N -1
C‘(L) = (% Z . _Z I(ri’j)*I(ri’ j - L) - U1U2>/01029
j=cy# L
where

I(ri,j) is the gray tone of the original image at pixel (ri,j);

C1+N-'1

K i
.1 :E: }E: .
Usq = I(r"\)) and
SR et B T
K Ci +N,i '1
2.1 > > H(r,»i)? . ui
1 ¥ i=1 j-= c; +L

are the mean and standard deviation for the first set. Similarly:

C+N.i'1

(o

g+t

1

K
’#—12
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are the mean and standard deviation for the second set in the corre-

lation computation. The number of pixels in the set (#S) is given by:

K =¥ + Ni -1
5= D >
i=1 J-= c; + L

The segmentation of the density images were created by three rules.
First, by an equal interval quantization. Since the density tended to be
concentrated at the low end of its range, the segments of Tow density
tended to cover most of the area. Each of the 3 x 3 filter iterations
on the extrema image were semgented.

Second, the equal probability quantization rule was tried. This pro-
duced images with approximately equal number of pixels in each segment.

As above, each of the 3 x 3 filter iterations extrema density images were
segmented to 2, 3, 4, and 5 levels.

By the third rule the image which had to be filtered three times with
a 3 x 3 window was clustered into 4 segments corresponding to the 4 peaks
in its histograﬁ. A1l these rules generated a large number of tables and
values. We will examine the results of the last rule in more detail. The
segmented images are shown in Figure 4.2.2.

As mentioned above, the autocorrelation function computed the auto-
correlations in the horizontal direction as well as the mean and standard
deviation of the gray tones for the entire category. The mean corresponded
to the average height within a segment. The standard deviations and auto-

correlations measured aspects of texture within a segment. Table 4.2.1
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} Figure 4.2.2a.

Figure 4.2.2b.

Four segments (0-black), (1-green), (2-orange)
and (3-purple) of the extrema density image
after three 3x3 averaging filters.

Transpose of filter 333 extrema density image.




shows the autocorrelations for the four categories for different lag values;
for both horizontal and vertical scans. The results for the vertical scans
! were obtained by applying the same algorithms to the images after they were
: ‘ transposed (i.e., rows and columns interchanged).

It was expected that high standard deviations as measured of height
variability tend to indicate rough texture. Autocorrelations of pixel
heights on images generally tend to be high for small lags and drop to
near zero for larger lags. Rapidly decreasing autocorrelations with
) increasing lag indicates rough texture.

The results examined over the various segmentations were mixed. In
i general, the means and standard deviations increased slowly with increas-

ing extrema density of a segment. This trend in standard .deviations

f supports the idea that extrema density measures texture. The fact that

\‘ means and standard deviations increase together and are therefore corre-
Tated, supports the observation that extrema images are 1ike contour maps.

There was no clear pattern between segments and autocorré]ations.

The autocorrelations in the vertical directions were significantly dif- i

E ferent from those in the horizontal direction for the same segmentation. 1

This was perhaps due to a directionality in the textures in M4A. t

A statistical problem whose significance is not clear yet is the |

fact that the number of pixels in the subset S goes down as L increases. ‘

That is, the autocorrelations at different lags are being computed for

different sample sizes. As long as the sample size is large, this would

not have much effect. However, for some categories the sample size falls

off quite rapidly with increasing lag. This may give rise to statistically

invalid results and may explain why there is a slight upswing in the

autocorrelation for higher lags.
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Table 4.2.1.

AUTO-CORRELATIONS FOR

MEAN GRAY TUONE
STO. DEVIATION
SEGMENT SIZE

SEGMENT NO.

]
1

nonu

é. 40
2. 47

o

2149 FIXELZ

1 II - I

I HORIZONTAL II VERTICAL I
1 I I II I -1
I LAG I ALFHA I SAMPLE II ALPHA I SAMPLE I
I I 1 II I 1
I 1 1 0.93 I 14609 II 0.92 1 1577 I
I 2 1 0.80 I 1167 II 0. 20 1 1101 I
I I ¢ 0.65 I 875 II 0.70 1 774 I
I 4 1 0.44 1 &322 II 0.62 1 528 I
I S I 0.22 1 544 II 0.55 1 IS I
I & 1 0.03 1 439 II 0.5z 1 Z74 I
I 7 I -0.10 1 358 II 0.49 1 197 I
I g8 I -0.12 1 239 II 0.54 1 132 I
I g I =014 1 224 Il 0.64 1 =7 I
I 10 1 -0.11 1 1832 II 072 1 Lz I
1 I I -I1I I =1
AUTO-CORRELATIONS FOR SEGMENMT NO. 1

MEAN GRAY TONE = 39 03

STD. DEVIATION = 13 25

SEGMENT SIZE = 4094 PIXELS

I II-- I

1 HORIZONTAL Il VERTICAL I
1 1 I II --1I -——-1
I LAG I ALFHA 1 SAMPLE II ALFHA I SAMFLE I
I I I II I ~=1I
I 1 I 0.90 1 2333 II 0.8 1 2447 I
I 2 1 0.72 1 1367 11 0.4628 1 1443 I
1 3 1 0.61 1 7935 II 0.58 1 276 I
1 4 1 0.51 1 485 I1 0.48 1 550 I
I S I 0.43 I 301 II 0.43 1 244 I
I 6 1 0.38 I 190 II 0.3% 1 211 I
I 7 1 .35 I 118 II .33 I 127 I
I g8 I 0.34 1 &9 II .22 1 74 I
I 9 1 0.3z 1 37 II 0.25 1 4z 1
I 10 1 0.46 1 16 II 0.22 1 24 I
I I I-—— I1 I-- -1

Autocorrelations ALPHA as a function of LAG for the four segments
SAMPLE indicates the number of pixels for

of Figure 4.2.2.

computing the autocorrelation for different lags.
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AUTO-CORRELATIONS FOR SEGMENT NO. 2

MEAN GRAY TONE = 41. 20
STD. DEVIATION = 15. 34
SEGMENT SIZE = 4957 FIXELS.
1 I11———- -1
I HORIZONTAL 11 VERTICAL 1
1 I 1 11 I I
I LAG I ALFHA I SAMFLE Il ALPHA I SAMPLE I
I I -1- 11 1 e |
I 1 1 0.90 I 4930 Il 0.84 1 Stiz I
I 2 1 071 I 3443 11 0.5% 1 3631 1
I 3 1 048 1 237z 11 0.40 1 2531 1
I 4 1 o0.1% 1 1668 II 0.27 1 1275 1
I S 1 004 1 1182 11 0.24 I 1272 1
1 ¢ 1 -0.05 1 333 11 0.zz 1 1000 I
1 7 1 -0.04 1 se4 II  0.21 I 732 I
) 1 2 1 -0.01 1 30 I1I 0. .z20 1 S41 1 :
; I ¢ 1 o001 1 310 II 015 1 407 1 i
1 10 1 0.0z 1 232 11 0.14 I 304 I :
1 1 - 1 II 1 1 i
‘ AUTO-CORRELATIONS FOR SEGMENT NO. 3 i
MEAN GRAY TINE = 45. 164
- i STD. DEVIATION = 1é. 10
¥ SEGMENT SIZE = 3124 FIXELS.
- I - 191 I
¢ 1 HORIZONTAL 11 VERTICAL I
1 1 I- 11 -1 I
I LAG 1 ALPHA I SAMFLE II ALFHA I SAMPLE 1 [
I 1 | G 11 1 -1 g
¢ I 1 1 0% I 2353 II 074 1 2444 1 [
: I 2 1 072 1 1662 II  0.43 1 12132 I ;
I 23 1 o058 I 1131 I 0.57 1 1324 1 H
: 1 4 1 0.47 1 774 11 0.52 1 gt I ¢
I s 1 0.35 1 S3¢ 11 0.42 1 722 I 4
1 &6 I 027 1 285 IIT 042 1 =52 I
: 1 7 1 025 1 24 11 0.5 1 472 1
k I 8 1 031 1 17  I1 0. .32 1 21 I
1 2 1 0.41 1 167 11 0.2z 1 742 I
1 10 1 0.55 I 121 IT 0.3% 1 g2 1
I I-— 1 11 I I

Table 4.2.1 (continued). Autocorrelations ALPHA as a function of LAG for
the four segments of Figure 4.2.2. SAMPLE indi-
cates the number of pixels for computing the
autocorrelation for different lags.

g
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In view of the above discussion, various suggestions emerge. First,

some similar experiments should be tried on larger images with clearly

jdentifiable texture and no directionalities, or balanced directionalities.

Artifically synthesized texture images could be useful. Second, a part
of the reason for lack of clearly identifiable patterns with autocorrela-
tions is that many areas may be sloped. In these areas, where gray tones
locally approximate a tilted plane, pixels will be significantly posi-
tively or negatively correlated. It may be worthwhile to check this

idea by using sloped facet filtering models or experiment with arti-
ficial images with tilted planes in them.

The weight distribution over extrema (see Section 4.1) are inversely
proportional to extrema size and may not be best for creating extrema
density images. Consider a large area which is perfectly flat and is a
local extrema. This area has a smooth (or no) texture, but will be given
a higher density measure than a smooth slope. Weights chosen inversely
proportional to a higher power of extrema may yield an improved texture

density image.
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5.0 ATTRIBUTES OF PRIMITIVES

Texture measures based on histogram counts or density images tie
together structural and statistical approaches. The approach is struc-
tural in the sense that the primitives are structural. The approach is
statistical in that the spatial interaction, or the lack of it, between
primitives is measured by probabilities. These are all weak texture
measures and can be useful in segmentation when the texture patterns in
the image have weak spatial interaction. For textures which have strong
spatial interactions it may be necessary to determine, for each pair of
primitives, the frequency with which the primitives co-occur in a speci-
fied spatial relationship. These would be the strong texture measures
mentioned in Chapter 2. Meanwhile, a stronger form of the weak features
can be explored by taking into account properties of primitives or the
distribution of these properties. A good example is the work of Mitchell
and Carlton (1978) who not only used the frequency of occurrence of the
extrema primitive (density) but also one of its attributes, the height.

Different primitives, of course, yield different attributes. As a
matter of fact, a primitive may be described as a connected set of resolu-
tion cells characterized by a 1ist of attributes. In the rest of the
chapter we will Took at some of the attributes of the extrema and the
reachability set primitives. Since our aim is segmentation of the image,
we will Took at a general scheme to extract the primitive attributes and
an unsupervised clustering method to cluster the primitives. This will
then allow us to define a segmentation on the image. In what follows we
will use the term primitive to mean both the extrema as well as the
reachability sets.

The last section discusses some extensions of attributes for strong

texture measures.
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5.1 Extrema Properties

We have already encountered one primitive attribute in the last
chapter - the size of the primitive. We had used the size of the fre-
quency of the primitives to create the weight distributed images for the
generation of the density images. The size is an important attribute,
for in addition to being one, it is also used in the definition
of some other attributes.

The next most intuitive attribute is perhaps the height. This better
described by the one-dimensional cross-section shown in Figure 5.1.1.

This example is a maxima or a descending component of a maxima. "ﬁy",
the relative height is the difference between the maxima and its highest
valley. "ha" is the absolute height of the maxima. "hy" is related to
f‘ contrast while “ha" is related to brightness or intensity at that pixel
value. The width or size associated with a maxima can be the distance
between its two adjacent minima or valleys. Corresponding definitions
exists for valley heights (depths) for the minima and the ascending com-
ponent primitives.
Ehrich and Foith (1976, 1978) used maxima values (heights) in hori-
' zontal directions as primitives. They represented the primitives using '
the technique of a relational tree, which is an elegant method of storing
attribute values of primitives, and at the same time showing the recur-
sively nested structure of the primitives.

When we go to two-dimensional extrema, some modifications were made
depending upon the property. We had wanted the property extraction to be
a one or two pass operation on the image (this general scheme is described
later). In order to determine widths and relative heights in two dimen-

sions in an analogous manner as for the one-dimensional example above,
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Figure 5.1.1. Showing absolute height "ha", relative height “hr" and
width "w" of a maxima, in a one-dimensional cross-section.
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several iterations would be needed, so the definitions of relative height
and primitive width were modified. For the reachability sets the relative
height become the difference between the maxima and the minimum gray tone.
This is the number of gray tones in the region. Note that this does not
guarantee the minimum gray tone to be one of the boundary pixels of the
reachability set. The width was characterized by the shape (elongation
or circularity) of the reachability set. The relative height and width
for an extrema were not used. Another attribute used was the average
gray tone for an extrema. This is again meaningful for the reachability
sets only.

An attribute of the primitives which was useful indirectly was the
center of mass of the regions. This is the pixel location of the center

of mass of each region and is defined below.

Definition 5.1.1

The center of mass of a subset S &f the image, denoted by (rm,cm)

is given by:
rm=~#% Z r; and cm=-#% Z c; for all (r‘i,ci) €S

The center of mass for single pixel regions was the pixel itself.
The center of mass came in useful in computing other properties. It was
also designed for input to the region adjacency program discussed at the
end.

Other attributes examined dealt with shape and orientation. The
simplest definitions of the spread of a region are the dimensions and
perhaps area of the covering rectangle. A more realistic definition is
elongation. This can be defined as the ratio of the larger to smaller

eigen value of the 2 x 2 second moment matrix obtained from the (;)
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coordinates of the pixels in the regions (Bachi, 1973; Frolov, 1975).
Actually the square root of the ratio corresponds to the ratio of the
major to the minor axes of the covering ellipse. When the region is
circular, this value is 1. In this computation, the (;) coordjnates
are measured relative to the center of the region. Thus, having an
image with the center of mass pixels for each region marked out makes
this computation gquite straight forward.

Another measure for circularity is the ratio of the standard devia-
tion to the mean of the radii from the region cenfer to its border
(Haralick, 1975). However, this was not used as many of the regions
had only a few pixels which made the measure difficult for most part.

As can be seen from the images of the reachability sets, they are
not usually circular in shape but also have specific orientations. Two
measures for this were examined. The first was based on the second
moment matrix of the pixels described above. The components of the
normalized eigen vectors corresponding to the largest eigen value are the
direction sine and cosine for the region. These angles can be guantized
over certain ranges, yielding the orientation of the shape.

The second orientation measure was different in more than one way
from the attributes discussed above. It is actually a strong measure.
In this case the orientation angle for each region was defined by the
proximity and Tocation of the closest region to it. Thus, this was a
co-occurrence measure. The proximity was measured between the center
of masses for the two regions. If the closest region was too far away,

a special value was assigned for the orientation property.




There are many more complex properties that could be defined, but

this would have made the investigation an unending task. In the next

section a general scheme is presented to extract the properties. This

is foliowed by a discussion on how the properties may be stored and used.

5.2 Property Extraction

Because of a large number of primitives per image and a variety of
properties, the property extraction programs were restricted to computing
properties that took one or two scans of the image. A small 128 x 128
image contained 500-800 primitives. Owing to the limited core on the
minicomputer, a satisfactory scheme was developed which was based on two
assumptions. The first was that there would be enough memory available
to hold a few rows of the image and values for about 200 primitives at a
time. ‘The second and more important assumption was that the unique
region labels assigned to the primitives were partially ordered. This
implies that at any row of the image if the lowest .label encountered is
n, then from then on fill the end of the image, no labels with values
Tess than n would be encountered. This is exactly the way the REACH
algorithm assigns labels as it scans from top to bottom. Actually the
restriction does not have to be followed strictly as long as the labels
are ordered enough when a "shrinking" condition occurs. The program
keeps track of property values in a buffer for regions as it scans along.
If a region label is encountered which would bring the buffer close to
overflowing, a "shrink" operation is called upon. This writes out to
the disc the property values for regions that have been completed, thus
shrinking or freeing up buffer space. The values written out are for

regions with labels one less than the lowest label in the current row.
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"The scheme works extremely well and large images are processed without

any problems. The properties discussed before can be extracted by this
method. For example, size implies counting pixels of different regions
as the scanning progresses. Height is computed by keeping track of the
largest and least greytone of a region. Center of mass components are
computed by summing the row and column values for the region. Many of
the properties can be computed simultaneously in one scan. The second
moment matrix computation requires reading in the center of mass image at
the same time thus making it effectively a two-pass operation.

The property values are written out in tabular form to the disc.
This is essentially the form required by the clustering algorithm.

However, if a "property image" needs to be created, it may be done using

the property values table and if necessary the images with the primitives.

The center of mass image is one such example. The centers of mass
region were read in from the table and an image created with the corre-
sponding locations marked. Figure 5.2.1 shows the center of mass images
for the reachability set primitives.
Property images may be created from any of the other properties

as well. Take for example the height property. We can create an image
in which we can mark in each pixel in a primitive region of size N the
/alue h indicating that it is a part of a primitive having height h.
i=arnatively, we can mark it h/N, indicating its contribution to the

-+ ,e area or perhaps mark the center of mass pixel with the value

“~e- e "mages may be viewed to see the distribution of the height

“r %0 *he property image concept is the property density
-‘'ar process to the frequency density image of

© 1 snows an image for which a value W<h has
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Figure 5.2.1a. Center of Mass pixels for the Descending
Component regions.

Figure 5.2.1b.  Center of Mass pixels for the Ascending
Component regions. &
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Figure 5.2.2a. Absolute Height property image for M4A.
(Maxima Primitive)

Figure 5.2.2b. Absolute Height property density image g
obtained by applying five 5x5 window averaging
iterations.
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assigned to each N cells of the maxima primitive. 'h' is the height and
W a weight. This image was iteratively defocused and the resulting
Property density image is also shown. This like the other density
images, can be used as a texture information band in multispectral
clustering.

In order to examine and get a feel for the distribution of the prop-
erty values, another general set of programs were written to compute and
print out histograms, bar graphs, or the data in tabular form. This

helped very much in the selection of properties for clustering. Figure

P, - s

5.2.3 shows examples of these.
Owing to lack of time, not much experimenting was done with property
density images. Instead, direct clustering was applied to the primitives

themselves. We discuss this in the next section. ' 3

5.3 Clustering

Clustering calls for the grouping of similar primitives into clusters
based on their attribute values. The clustering function is not an image
operator in that its domain is the attribute value table. It assumes that
any spatial information if necessary has already been included in the attri- @

bute value table. Only when the final clusters have been determined, is

the primitive image accessed for relabeling.

Owing to the large number of cases (primitives) to be clustered and
lack of ground truth, an unsupervised clustering scheme was devised which was
stringent on core memory. In what follows we will discuss the clustering
method and the definition and properties of these clusters.

Suppose we have S primitives and each of these primitives is characterized

by K attribute values. - The K attribute vaJues are referred to as the
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"measurement vector" or "measurement pattern" or "spectral signature" of
the primitive. Because of this the clustering operator belongs to the

class of measurement space operators as it operates on the measurement space
defined by the data ranges of attribute values.

Inhérent to any clustering operation is the distance or similarity mea-
sure used. This presented a problem as the components in the measurement
vector corresponded to values of different attributes. Arithmetic opera-
tions could not be used directly to compute say the Euclidean distance
measure. In order to preserve the individuality of each attribute, the dis-
tance used was the Mahalanobis distance for two vectors based on a set of

vectors. This is defined below.

Let T be a finite set of S measurement vectors {“1’u2""’”s}' Each
vector Ug is of the form ug = <u:,u§,...,u§>, where K is the number of com-

ponents of each vector. Also associated with each vector is a frequency b

or weight Vg In our case this will be the size of the primitive region.

For each of the K components we first compute the average value over
the S vectors. That is compute:

S
uk = % :E: “E’ for k = 1,2,...,K

s =1
The mean vector u is then given by u = <u1,u2,...,uk>. Next we compute
the covariance matrix as the direct product between (K x 1) column vector
(uS - u) and its transpose (uS - u)', which is a (1 x K) row matrix. It

is a K x K matrix.

Definition 5.3.1

Let Ugs b» and S be as given above. The covariance .watrix 3 is given by:




S
! ='% :E: g - w)ug - u)’

s =1

The entire product is divided by the number of vectors S for normaliza-
tion. The Mahalanobis distance function between two vectors of this set is

given next.

Definition 5.3.2

Let T be the set of measurement vectors as given above. The Mahalanobis
distance function between two vectars Uy and us of this set, denoted by

d(ui,u.) or just dij is given by:

J

)

d(ui,uj) = (u; - us)! F'l (u; - uj

J

where

t'l is the inverse of the covariance matrix of Definition 5.3.1

This gives a distance measure between two vectors at the same time main-
taining the individuality of each attribute. The limitation is that its data
dependent. If we add a few more vectors to the set, distance values between
vectors will change as the covariance matrix is changed.

The clustering procedure is an iterative one. In the first iteration
we consider each region as a cluster. Each iteration groups together the
clusters obtained in the previous iteration. At the same time, it generates
measurement vectors for the current set of clusters to be used for the next
iteration. A new measurement or signature that is generated for a group is
a function of the measurement vectors of the clusters that were put together

to form that group.




I R eI

In generating this new measurement vector, it is useful to use a weight-

ing factor for this computation. For example, if primitives x and y are put

together in one group and one of the attribute-components was the height h,
then we need to define the height attribute value for the group. This can
be (hx + hy
its better to compute this new height value as (Vxhx + vyhy)/(vx + v

)/2. However, if the two primitives differ in size considerably

J)
where Ve and v, are the sizes of the two primitives which we use as weights.

N
The size for the group will be (vx + vy). However, this weighting may not
be desirable for all the attributes. For example, for the orientation
attribute we may want the orientation to be the average orientation regard-
less of the size of the regions. In the implementation of the clustering
algorithm it was possible to indicate which attributes should be weighted
and which should not.

We now Took at a clustering scheme for a set of measurements patterns.
This method is called "Orbit clustering", owing to the similarity in
definition of the clusters Qith that of orbits of states in automata theory
[Bavel (1968), Chapter 7]. We describe the process first in a purely mathe-
matical setting to emphasize that it is a pure clustering operator, and not
restricted to image category clustering.

We are interested in finding for each vector the vector closest to it
in T. Owing to the finiteness of T we are always guaranteed of finding one,
no matter how far away it may be. However, if the distance of a vector to
its closest neighbors is too much, we want to treat that vector as isolated.

This idea can be expressed by the following function.

Definition 5.3.3

Let T be as described above. A function f:T - T is called the Nearest

Neighbor function and is defined by:

89




ST

f(ui)

= Min
Uj where A >d.ij = liS is {d15}

Uy otherwise

In the case of two or more vectors being equidistant from a vector,
anyone is chosen arbitrarily. The exact formulation of A is not important
right now. It is sufficient to realize that it provides a check to ensure

that we do not group together vectors which are too far away.

Definition 5.3.4

Let T and t be as given above. The Orbit of a vector, denoted by O(u),

is given by:
A 0(u) = {f"(u)|n e %}, where 1 is the set of non-negative
,‘ integers, and

M) = £(F" ~ Lu)

Q The orbit of a vector "u" is a set of vectors. The vector u is called
a generator of 0(u).

Before we can see how we can use the notion of orbits in clustering,

g
=

g

some results have to be established. Clearly, in order to generate O(u),
we should not have to look at f composed with itself, infinite number of iQ
times, as the definition suggests. The lemma below shows that that is i
indeed true. To generate O(u), the function f has to be composed of a finite
integer number of times. This is a direct consequence of the finiteness of

T. In extreme cases O(u) may consist of u alone or may encompass T entirely.

Lemma 5.3.1
{ Let T = {ul,uz,...,us} be a finite set of measurement vectors. Then

the orbit of vector u is given by:

90 ;

.

to...

o s




0(u) = {f"(u) | 1<n <m} whereme 1

Proof

The orbit of a vector is found by successive applications of the func-
tion f. Each application generates another vector. Suppose that as we
apply f, we mark off the different r ¢ T as being included in O(u). We
keep track to see if f generates any vector which is already included. Two
4 possibilities can occur.

Case 1 -- all the elements of T are marked as being in O(u), without
encountering any of thesé twice. In this case exactly (S - 1) application
of f must have been made, where S is the cardinality of T.

In the (S - 1) + 1 = S application we will generate a vector which is

already a part of O(u), and successive applications will also generate vec-
tors already included in O(u). Thus, O(u) = Tandm =S - 1 here.
Case 2 -- suppose in the kth application, k < S, we encounter a vector

which is already included in O{u), i.e., fk(u) e 0(u). Then:
FFRQu)) = K * 1 (u) e o(u), for F(FX(u))

will generate the same vector, the first time fk(u) was encountered, and

- RS g 8

that has already been included in O(u). Similarly, f(f(fk(u))) = fk + 2(u)
will also give a vector already included in O(u). In general fk * j(u),

J ¢ 1 will be vectors which have been included in O(u) previously. Thus,

further generations will not be necessary and m = k - 1.
In each case m is a finite number and gives an upperbound to the
number of compositions of f.

f is a function that generates the next vector in the sequence of pro-

ducing the orbits. We now need a function which goes the other way. This

91
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is a function that when applied to u ¢ T gives us the set of all predecessor
vectors of u. A vector us is calied a predecessor vector for Uy if and only
if there exists a n ¢ 1 such that f"(uj) = Uy Actually it is more convenient
to define this predecessor function as a set function, rather than a point
function. This function is denoted by "g", and its domain and range sets

are the power set of T. The definition follows.

Definition 5.3.5

Let T be a set of measurement vectors as described previously. Let

Re T. The Predecessor function is given by g: P(T) » GXT). The Predecessor

set of R, denoted by g(R), is defined by:

g(r) = ueT | fu) eR, nerl

g(e)

The definition states by applying f sufficient number of times to
u ¢ g(R) we generate a member of R.

The clusters that the Orbit clustering operator creates can be expressed
using the function g. Simply, the clusters generated in one iteration from

the set of vectors T is the set:

{g(0(u;)) | 1 <1 < S}, where S = #7

A cluster is determined by generating the orbit of a state and then
taking its predecessor set. It remains to show that these clusters are
well defined. Each vector is assigned to one and only one cluster. That
each vector is assigned to a cluster is evident from the definition of the
set of ¢lusters. The fact that it can only appear in one cluster is given

by the lemma below.




In the following we will refer to a vector u; e T by its index "i".

Thus, O(ui) becomes 0(i). This is only done for notational simplicity.
We will also make use of the fact that the composition of f with itself

is commutative. For two integers a and b we have:

(%) = 2 * P(u)  from definition of f

0+ %(u) by commutativity of addition
22 (u)).

Lemma 5.3.2

Let T be a set of vectors denoted by {1,2,...,S}. Then for all i,
J e T either:

g(0(i)) M g(0(j)) = »

or

g(0(i)) = g(0(3)).

Proof

Suppose g(0(i)) (.‘ g(0(j)) # ¢. We need to show then that:
g(0(i)) = g(0(3))

Now g(0(i)) /) g(0(j)) # ¢ implies that there exists k ¢ g(0(i)) and
n.

g(0(j)). Further, k ¢ g(0(i)) implies f T(k) e 0(j), for some n; ef

and k ¢ g(0(j)) implies fnj(k) e 0(j), for some n, ¢ 1.

J
Let p e g(0(i)). To show that p € g(0(j)):

n
p e g(0(i)) implies f 1(p) e 0(i), for some nped

n, n
Since both f '(k) and f 1(p) are members of 0(i), then at least one

of them must generate the other by successive application of f. It is pos-

sible that both can generate each other, but that does not matter.
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: n, n
1 Case 1 -- if f '(k) generates f l(p), then

n, Ny ny
f “(f "(k)) = f “(p), for some N, e 1

n.
Applying f J to both sides we have .
2 n. n n. n, n,
’ £3(¢ Yp)) = £ 3¢ 2(F 1))
- n, n, n,
= £ 46 3(F 1))
;’ n n., n.
; = £ 2(¢ (5 3(K)))
n,
But f J(k) ¢ 0(j).
n, + ny N ;
Therefore, f (f J(k)) € 0(3) by definition of 0(j): 1i.e.,
£
L . H
‘ f 2(f “(p)) e 0(j), which implies p ¢ g(0(j)).
Ny n, ny ny n, f
Case 2 -- if f * generates f (k), then f “(f “(p)}) = f "(k), for some i
n. ;
ny e f. Applying f J to both sides we have: j
. : n. n n n. n. g
o SRR ONEREI()
- 0y 0, n, ‘
v =f (f (k) € 0(j), since f I(k) ¢ 0(j).
n.+n3+n1 ‘
Therefore, f J (p) € 0(j) implies p e g(0(j)).

In either case, p € g(0(j)). But p was chosen arbitrarily in g(0(i)).
Therefore, g(0(i)) = g(0(j)).
By a symmetric argument it can be shown that g(0(j)) < g(0(i)). Hence,

g(0(1)) = g(0(j)).

The Temma says that if two clusters have one or more vectors in common,
then they must be the same cluster. Thus, each vector is assigned to one

, and only one cluster, and the clusters are well defined.
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Having obtained the clusters in one iteration, we need to generate
the measurement vectors for this new set of clusters. This is done according

to the definition below.

Definition 5.3.6.

/
Let the set/of vectors which form a cluster be denoted by the indices
{"1’"2""’"r}' The frequency V and the measurement vector <U1,U2,...,UK>

for this c]ustqr is given by:

]
/

/

r¢
J =

1"

[
/]

‘T
:E: Vo uﬁ //V, if weighting was specified or
j=1 "3 7]

r

uﬁ //}, if no weighting was specified.
i=1 7]

™

In gummary, one Orbit clustering iteration consists of generating the
c]ustersjg(o(ui)), i=1,2,...,5, and the means for the next iteration. This
proceduré is repeated until the number of clusters is reduced to less than
some number desired.

This clustering method has one drawback. It is agglomerative in
nature as it only coalesces clusters, but never splits one that may be
badly defined. It is important, therefore, that we have some control over
which elements are being put together. The parameter A, mentioned before,
is one such regulator. It ensures that if the minimum distance, in metric
space between a cluster and its neighbor, is too much, the cluster is not

grouped with any other. In that iteration it forms a group of its own.
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The implementation of A can be done in different ways depending on

what is desired. For example, one may have some idea of what the distances

in measurement space mean. In this case the maximum allowed can be fed

into the program before each iteration. Another way is to define A in a rela-
tive manner. This is done by computing the average (u) and the standard
deviation (o) of the minimum distances. We denote by di’ the distance to

its closest neighbor (minimum distance) for cluster "i".

: S S

u= (Z di)/S and o° = (}: (d; - u)z) /s
i=1 i=1

The cutoff A is given by A = u + 60, where 8 is some real number. Here the

cutoff is controlled with respect to the distribution of the data. If o is

very large, then a small 8 or even negative value may be entered. This ensures

that the cutoff is reasonable. There are other ways of introducing x. In the

implementation of the algorithm only the above two methods were included. !

For each iteration the user is asked for 8 and the absolute maximum distance

allowed. The actual cutoff chosen is the minimum of the two. This gives a
Tittle additional control.

The use of the clustering process on image data can be described as
follows. First a table is generated which contains the size and attributes
of the primitives we wish to cluster on. These are obtained by the property {
extraction scheme described previously. For each attribute it is also indi- |
cated if weighting is to be used or not in computing group measurement vectors.
The table gives the initial set of measurement vectors and frequencies for
the first iteration of the Orbit clustering operator. The operator is applied

repeatedly until the number of clusters have been reduced to what is desirable.
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During the clustering, we keep track of which cluster each of the original
regions belongs to. The primitive image containing these regions is then
relabelled according to the cluster codes. This gives us the clustered image.

We mentioned before that one drawback of this method was that it only
coalesced clusters and never checked to see if any needed to be split.

This, however, does have an advantage in an indirect and practical way. The
execution time is reduced considerably, but even more, the core requirements
are minimal. Most clustering procedures which group and split clusters
require memory in arder of 32, where 'S' is the number of elements being
clustered. This scheme requires order of S. That is very useful for large
data sets. The execution time is still order of 52 per jteration, because
for each vector the rest of the vectors have to be examined to find which
one is closest to it.

The reader may have noticed some similarity between the orbit cluster-
ing described above and the method of single linkage clustering [Sneath and
Sokal, 1973; Anderson, 1973; Hartigan, 1975]. This similarity exists only
for the first iteration. Being agglomerative methods, both begin with tne
assginment of one case per cluster, and then looking for nearest neighbor
links. In general, in the single linkage scheme, two clusters may be merged
if any of their members 1ie close enough. That is not so for the Orbit
clustering method. There the links are computed between cluster centroids
and not between pairs of individual members of the clusters. The centroid,
which is computed using the weighted means of the members of the cluster,
is a much truer representative of the cluster's position in measurement space.
Links based on centroid coordinates are, therefore, a better critiera for

merging clusters. Their use also reduces the problem of "chaining" which
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tends to occur when using single linkeage. Furthermore, the use of control
parameters ensures the merging of only those clusters which Tie close enough
to each other. Single linkage clustering procedures do not include these
regulators.

In any iteration, it is not possible to specify the number of clusters
desired. That is really a function of the data set and the thresholds
entered. For this very reason, the process is sometimes referred to as
unsupervised clustering. In supervised clustering schemes, the number and
kinds of clusters are determined before the clustering takes place. This
requires some prior knowledge about the data. In image category clustering,
the information is usually entered as ground truth data. Without it, it is
difficult to perform any supervised clustering. In the unsupervised case,
no prior information is necessary. Only after the result is generated, does
one sit down for analysis with the ground truth.

The clustering scheme was appiied to the various to the extrema and
reachability set primitives. The results of this and post processing are
discussed in the next chapter. To close this one, the last section looks

at attribute values from the strong texture measure point of view.

5.4 Strong Measures

The previous sections described the weak texture measures as we were
mostly looking at the distribution primitives and their attributes singly.
More complex measures would involve a definition of the spatial relationship
between these primitives. This was not part of the research carried out,
but is inciuded here as a natural extension of the primitive-attribute

values for stronger measures.
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Including spatial relationships gives rise to second order counts and

co-occurrence. In the case of the pixel primitive and its gray tone attri-

SN e 13

bute, spatial relationship was distance between pixels. These resulted in

the gray tone co-occurrence counts. This idea may be extended to any primi-

tive. Co-occurrence of primitives with attribute values gives rise to the

concept of the Generalized Co-occurrence Matrix (GCM) first investigated :

by Davis et al. (1979). ;
The first step is to decompose an image into its primitives which we R

denote by the set Q. Let T denote the set of primitive properties such as

size, shape, mean gray tone, etc. Also let f be a function assigning to each
primitive in Q a property of 7. Finally, let SCQ x Q be a spatial relation
paring all primitives which satisfy the spatial constraint. The Generalized

Co-occurrence Matrix (GCM) P is given by:

#{(ql,qz) eS| f(ql) =t and f(qz) = t2}
P(t),ty) = 75

P(tl,tz) is the relative frequency with which two primitives co-occur in the

specified spatial relationship, one having the property t1 and the other having
the property t2.

The primitives Davis et al. used were edge detectors with directional
information. The spatial relationship was in form of a general constraint
predicate which measured spatial proximity by two primitives being within a
distance "k" or a primitive being the nearest neighbor of the other. These
predicates could be combined with orientation constraints as well to emphasize

directionality if needed. It should be noted that in the spatial relation

T e e

using nearest neighbor predicate, the GCM is no longer symmetric.
Davis et al. compared GCM's and the gray tone co-occurrence matrices on

the same set of images and obtained much better discrimination with the former.
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The computation of the GCM is a much more difficult task in the general
case, especially if the spatial relation is complex. Davis et al. simplified
it by making their primitive size that of a pixel, and counting pixels that
co-occurred in the spatial relationship. The same thing may be done if the
primitives were extrema or ascending/descending components. Each could be
represented by a single point, preferably their center of gravity. Counting
could then be done by Taying a window around each pixel. This would guarantee
that no primitive pair would be counted twice. However, it would be nice to
have a general program which would count proximity for regions of arbitrary
size. This would be complex as one would have to keep track of which pairs
of primitives had been counted and which had not.

Another way to solve the counting problem is to define spatial relation-
ships as adjacency. The method involves growing the primitive regions out
till they touch each other. From this image a region adjacency graph (RAG)
denoting which primitives are adjacent can be generated and counting can be
carried out on it. Figure 5.4.1 shows such a filled image. This was the
result of growing the min-max 2xtrema ti11 they touched each other.

A brief note here about the terminology weak and strong measures. We
have been characterizing first- and second-order statistics by the above two
terms. Actually the difference between their performance may not be as wide
as the terms strong and weak suggest. They were chosen here for want of
better ones.

“"Weak" measures are not really that weak. As we have seen, a lot of
texture information for discrimination and segmentation can be extracted
from these statistics. The question to ask is whether there is anything that
can be obtained by second-order measures that could not be extracted by

first-order methods? Putting it another way, given a second-order statistic,
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Figure 5.4.1a. Uniquely labelled extrema of M4A.

Figure 5.4.1b. Extrema labels grown out to determine '
adjacency. ‘




is there a set of first-order statistics which used in combination with each
other or iteratively, that could perform the same task? As an example, let

us look at the problem of discriminating between the two images of Figure
2.1.1. We stated that based on histograms these few images could not be
distinguished, but co-occurrence matrices could separate them. However, there
are other first-order measurements that can. An example is to compute the
root mean square (RMS) error between the images. The RMS error, E, is

defined as follows for two images I and J of the same dimensionality, Nr row

by Nc columns:

1/2 ]
X () - P I
(1sJ)EZrXZC ‘

NY‘ XNC i

This is a point by point comparison and uses no spatial information.

: If the error is large compared to the gray tone range, the two images would

be considered distinguishable.

Another simple weak operation to distinguish them would be to run a

i
s
: i
5 2 x 2 box filter and then look at the histograms. As seen from Figure 5.4.2 ‘

the resulting histograms are quite different and thus can distinguish the 1

image. The images are smaller as we lose one row and column owing to edge

effects in the filtering operation.

At this time there is no clear answer to the question posed above.

;
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Figure 5.4.2. Effect of a 2 x 2 average filter on images of Figure 2.1.1.
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6.0 CLUSTERING RESULTS

We now look at the results of applying the clustering scheme
described in the last chapter. The clustering was carried out on both
the photographic and radar bands of the images provided by ETL. Since
it would be impractical to describe all the processing that was done,
we will Took at some results of processing four subsectiuns of the ETL
imagery. These subsections were selected for their representative
textures. One of these is the image M4A encountered previously. This
and other images are discussed in the sections to follow.

Subsections of the original 512 x 512 images were chosen instead of

L

the entire image owing to computer limitations. The development of the
software and processing was done on a PDP-15/20 with the RSX Multi-
" Access operating system. While this system has a lot of flexibilities,

it severely restricts the size of the image data files on the disc. As

a result the largest image that could be processed was about 200 x 200.
Most of the images selected however were 128 x 128, as this gave the
optimum performance in disc storage and processing times. The

: ' algorithms developed though are quite general and can easily process

SRR P

larger images if hardware limitations are removed.

6.1 Attributes for Clustering

As mentioned before the clustering operator is not restricted to
image data but was set up to cluster any set of cases for which an
attribute value table was available. Here the cases were the primitives
- maxima, ascending components etc., and the attribute value table was
the property values for the various attributes discussed in Section 5.1.

Thus the clustering process first involved a generation of an attribute
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value table for the primitives in question, by the property extraction
operators. The table contained a property value for each attribute
specified for each primitive. Clustering was then performed on this
table. The resulting cluster code list was used to create the clustered
image from the corresponding uniquely labelled image of the primitive
regions. This separation of the clustering operation from tne image
domain was done to keep the clustering general, as well as to maximize
core work area during processing.
Of the properties discussed in Section 5.1, five were selected and

used extensively for all the images. These five were:

1) Size of the primitive,

2) Maximum gray level,

3) Minimum gray level,

4) Number of levels in the primitive and

5) Average gray level.

The size of the primitive is the number of pixels in the primitive.

This information was always required by the clustering operator, whether

g

or not it was specified as a property to be used. As given in

P -

Definition 5.3.6 this size corresponds to frequency and was necessary

for computing the measurement vectors for the new groups, for the next

T e

clustering iteration, if weighting was specified for a particular
attribute. In the actual implementation of the code, two types of
weighting schemes were allowed. To compute the attribute value for a
set of cases in a group, one could either weigh by the pixel sizes or

by the number of regions comprising each case. If the region sizes were
about the same, the latter option seemed more feasible. Essentially the
second option amounts to assigning a weight of '1' to each row of the

initial attribute value table. Weighting by number of regions was
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specified for all properties except the region size itself, as that
would have been meaningless. No weighting option was specified for the
size property.

The maximum gray level corresponds to the absolute height for the
maxima and descending components (valley height for ascending
components). The minimum gray level corresponds to peak descent for the
descending components (valley depth for the minima and ascending
components). The number of levels is the range (= Maximum-Minimum+1)
of levels for the descending and ascending components. It gives a
measure of the relative height of a peak or valley. The average level
is the average graytone over the primitive region.

For the extrema primitives only the maximum gray level is
meaningful. The others are redundant or of little value. For example
the number of levels for an extremum primitive is always one, and the
minimum level is always the same as the maximum level. The sizes for ﬁ
most extrema is one with very little spread. The five attributes are

more meaningful for the reachability sets. Also the distributions of

these attributes are more spread out as can be seen from the histograms

of Figure 5.2.2. This would allow for better clustering. Since the i}

P

maximum/minimum gray level for the extrema was the same as for the :
corresponding reachability sets, only the latter primitives were used
in the clustering experiments. Not only did they include all the

meaningful properties of the extrema, but owing to their larger size,

they gave a better spatial definition to the different textured regions

of the image.
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To get a visual idea of how well these attributes characterised
reqions of different texture, property images were generated for the
reachability sets and the five attributes mentioned above. Along with
the histograms these images helped suggest which properties might be
more useful for clustering.

The property images were generated the same way as described in
Section 5.2. Figure 6.1.1 shows these images. The maximum level
(property 2) looked the best for both reachability sets followed by the
average level (property 5) and the minimum level (property 3). The
number of levels (property 4) seemed very mixed and did not suggest
direct segmentation. It could perhaps have been more useful as a
secondary component in the measurement space clustering. The size
property (property 1) attribute was a 1ittle more consistent but not
very illuminating by itself, except to bring out some large flat no-
texture regions.

The clustering was carried out using different combinations of the
five attributes mentioned above. Examples of these are given in the
following sections. It sould be noted that property 4, the number of
levels in a primitive region, could not be used with both the maximum
and minimum gray lTevels. This is because it is a linear combination of
the two. Using all three attributes together would make the covariance
matrix singular. Thus the combinations of attributes that were allowed

was restricted slightly.

Before discussing the processing on the individual images there are
two points that remain to be covered. The first deals with the level

of clustering. As mentioned in Section 5.3 the clustering operator is




Descending Components Ascending Components
Property 1 - Size of primitive regions.

Descending Components Ascending Components
Property 2 - Maximum gray level.

Descending Compaonents Ascending Components
Property 3 - Minimum gray level.

Figure 6.1.1.  Property image for the Descending and
Ascending compenents of M4A. Similar regions
indicate regions with similar property values.
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a coalescing one. In each iteration the number of groups decreases or
remains the same. The latter occurs if the user-entered thresholds are
too restrictive. A problem with this and for that matter all non-
supervised clustering algorithms, is to know when to stop. In a
supervised environment the number of final clusters is usually known or
specified at the beginning. Here without extensive ground truth it
becomes in part a guessing game. The problem is further compounded by
the noise in the image. Even if we were to know that there are five
classes in the image, it does not follow that the non-supervised
clustering should yield exactly five clusters. Usually we would have
to settle for more than five groups as some clusters may be noise
regions of the image. The best way to solve this problem is to examine
images for the final four or five stages of the clustering. By then the

number of clusters has been reduced to a managable range and each can |

be examined individually. An example set of images is given in the next }
section. In our processing, along with the examination of the clustered ?
image, a table of cluster groupings with measurement vectors was also
printed and analysed, for each iteration. Based on these, the best

stopping point was determined. The cluster groupings indicated how many b

original regions there were in each group. Thus if in a late stage in
the clustering, one group consisted of only one region, then it was
either a noise region or one with an extreme attribute value. An
examination of the measurement vectors printout would clarify this.

Instances of this occured in many images as there was usually atleast

one flat region with an extreme size value.
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The second point deals with the spatial generalization operation on
the clustered image. This is sometimes also referred to as region
growing. The idea here is to incorporate the unclassified part of the
image into the segments determined by the clustering. The unclassified
area consists of pixels which did not fall into the unique reachability
sets. The premise behind the spatial generalization is that the pixels
in the unclassified area adjacent to the primitive region, very likely
belong to the segment that the region has been assigned to. This is
especially true of unclassified pixels which are surrounded by primitive
regions of the same texture class. By growing these regions out, the
unclassified pixels are included and a segmentation of the entire image
is achieved. The growing is an iterative process, each iteration being
one scan of the image. In succesive iterations the regions grow one
pixel at time, until they meet each other or the picture edge. The
growing is terminated when the whole image is filled or by fixing the
number of iterations. The definition below summarises this.

Definition 6.1.1

let T={ I|I:Zr x Zc > L }and T' = { I'|I':Zr x Zc = L } be a set
of domain and range images. L is a set of labels and let N(i,j) denote
a neighborhood for cell (i,j). An image operator GR:T - T' is a region

growing operator if GR(I) = I' and

a) If I(i,j) # 0, then I'(i,j) = I(i,J)
b) If I(i,j) = 0, then I'(i,j) = 0 if #{(k,1)|(k,1) e N(i,j)
& I(k,1) £ 0} =0
else I'(i,j) = I(k,1) for (k,1) = N(i,J)
& I(k,1) # 0.

The above is for one iteration of the operator with '0'

representing the unlabeled class. Statement (a) says that pixels that
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are labeled are left labeled. The first pe t of (b) states that an
isolated unlabeled pixel is left unlabeled. A pixel is only labeled if
one of the adjacent pixels is labeled. The last part of (b) states that
an unlabeled pixel is assigned the class of one of its Tabeled

neighbors.

The neighborhoods that are used are the four and eight
neighborhoods of a pixel. These are used alternatingly to ensure an
isotropic growth. For most images only a few iterations were needed as
the primitive regions were distributed quite evenly. The region growing
can result in erratic growth if the initial regions are far apart. In
this case the number of iterations should be fixed.

A complementary operator is the region shrinking operator. This
takes pixels on the edges of regions and marks them as unclassified,
j.e. it 'shrinks' the regions. The purpose of this is two fold. Firstly
it automatically gives us the boundaries on a completely filled image.
Also when used alternately with the region growing operator it rounds
out region boundaries and tends to eliminate small noise type regions.
The resulting image is more homogenous looking. See Section 6.2 for
examples. The definition for this operator is given below.

Definition 6.1.2

tet T, T', N and L be as in the previous definition. An image
operator SR:T - T' is called a Region Shrinking operator if SR(I) = I'
and

0
Q if I{m,n) # I(i,j) for
some (m,n) ¢ N(i,j),
I{i,j) otherwise.
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Again the neighborhood here can be the four or the eight
neighborhood. In the examples presented the eight neighborhood was
used. The pixel is 'shrunk' if any of its neighbors differs from

itself.

6.2 Processing Image 'M4A’

Since it was the first to be processed a lot of work was done on
this image. The work was carried out to fine tune the parameters for
the clustering operation and also to determine which attributes gave
better results.

As described in Section 3.4, M4A is a 128 x 128 subimage of the
fourth ETL image. Geographically it is a small section of Union City,
north of Newark, a suburb of San Francisco. The area contains a trailer
court at the bottom left and residential houses with trees over most of
the picture. At the top left corner are fields, some of which are quite
dark. Running below the trailer court is a highway separating the court
and an orchard located at the very bottom left. A little left of the
center at the bottom is another dark field which is part of the area
between the highway and its exit ramp lane (see Figure 3.4.1).

The residential area which covers about two-thirds of the image is
not all one homogenous texture. This could be because the houses which
were built and developed at different times, had different spacing
between them. Compared to the texture of the trailer court it is much
coarser. Eroadly speaking, the image has four or five texture regions.
In the processing to be described below our aim was to get the best

definition for these regions.
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The analysis was carried out on both the photographic and radar
bands. The latter will be discussed later. On the photo band both “he
descending and the ascending reachability sets were clustered. These
images were illustrated back in Figure 3.4.7. Below, the processing on
the descending components is presented first.

In the example pictures which follow, the different clusters are
indicated by different colors. It is not possible in the clustering
algorithm to fix a cluster number (code) to any one group, for example
the residential area. The codes are assigned to the groups in the order
in which they are encountered and the manner in which the algorithm
merges them. A region could come out as cluster number two in one
processing run or as number four in an another. The colors are
consistent in that all regions in the same cluster or class have the
same color. Also the mapping of the cluster number to color has been
maintained over all the examples. This information is not of much use
except to identify the cluster number. There are twenty colors which
show twenty classes. If an image has more than twenty classes, cluster
codes twenty and higher have the same color. As most images being
analysed had around ten classes, this was no problem. The mapping of
colors to cluster codes is given in the appendix.

The best result on the descending components was obtained using the
size and the maximum height properties (properties 1 and 2). To get an
idea of the clustering process, the results of the final five iterations
for this run are shown in Figure 6.2.1. The corresponding spatiaily
generalized images are also shown. These images have 25, 19, 16, 11 and

7 classes respectively. In Figure 6.2.12 even though the original 536
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Clustered Image Generaltised Image
(a) Twenty five Clusters

g Generalised Image
b) Ninteen Clusters

Clustered Image Generalised Image
(c) Sixteen Clusters

Descending components clustering on photo band

Figure 6.2.1.
of M4A. Properties 1 and 2. Five iterations.
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Generalised Image
Eleven Clusters
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Clustered Image Generalised Image
(e) Seven Clusters

B

(f) 'Shrunken' image with (g) Smoothed spatially
boundaries. generalised image.

Figure 6.2.1.  ( continued )

116




T e

R Rl e

regions have been reduced to 25 clusters, the picture is still quite
complex. Further iterations bring out more order. In 6.2.1b the
residential area begins to emerge but the trailer court still contains
too many segments. By 6.2.1c this has also taken shape and the
residential area consists of essentially three classes. In 6.2.1d some
of the smaller clusters for the flat fields have begun to emerge, but
the residential region is still mixed. Finally in 6.2.1e both the
residential and the trailer court clear up to yield the image shown.
The discontinuity in the middle of the trailer court is an open ground
with perhaps trees. It connects the driveways of the different sections
of the court. This was understandably merged with the residential area
as it seems to have the same structure.

The residential area still seems to contain two classes and further
clustering could perhaps have cleaned this up. However it would have
been at the risk of merging other major regions. In Figure 6.2.1f the
‘shrunken' image with the boundaries between the different regions is
shown. Also in Figure 6.2.1g the spatial generalization of 6.2.1f is
presented. On comparison with the filled image of 6.2.1e it can be seen
that the process smooths out boundaries and eliminates small misiabeled
clusters inside large regions. This is the smoothed spatially
generalized image.

The final segmented image of Figure 6.2.1g is far from ideal but is
good for segmentation based only on texture, and no other properties of
the image. There are some errors. Some of the trailer court primitives

had merged quite early on (Figure 6.2.1a) with other primitives in the

top center residential area of the image. Once this occurs, it is not
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possible to separate them. This pattern was observed in many of the
runs and an examination of the picture suggests that these primitives
are similar in the properties being used and thus not separable. The
two part structure of the residential area was hard to eliminate for
most all the processing. This is because the texture of this area is
much more complex, and again the attributes being used are not enough
to capture this complexity. For example we did not use any information
regarding regularity of patterns. A glance at the image shows that some
houses are arranged in lines along with trees. Using a regularity
property we might be able to separate out this patterned texture from
the irregular arrangements of houses in other parts of the image.

The results on the flat fields are mixed. Most of them came out
quite well but some of them are still split. The reason for this is
that we only define the descending components on the bright parts of the
image. Thus we only pick up part of the dark fields. The rest of the
pixels of the fieid fall into the non-unique class. Correspondingly for
the ascending components we only pick up the darkest parts of the field,
with the rest of the field pixels again falling into the non-unique
class. This is a basic problem with the reachability sets. The light
and dark flat fields result in ¢ifferent spatial definitions when using
ascending and descending components. The different reachability sets
capture different aspects of fields. One would like to cluster both
sets at the same time, but this would involve the use of properties
which are common to both, such as size and shape attributes. There are
not many of those. The peak heights of descending components cannot be

compared directly to the valley depths of ascending components.
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Another basic problem with the reachability set approach is that
when there is sufficient texture (in terms of number of extrema) they
work well. However when the texture is very low or non-existent it
becomes difficult for the reachability sets to capture the shape and
properties of the area. The result is that we try to define the entire
flat region by one primitive. The flat fields are regions of little or
no texture and contain only one or two primitives, while well textured
areas like the trailer court have hundreds of regions. Some special
methods may have to be included to capture the flat areas properly.

As mentioned before several different combinations of properties
were used for clustering. Some examples of these are given in the next
set of figures. These and the rest of the figures to follow, show
the clustered image of the primitives and the smoothed spatially
generalized fully segmented image. While it is difficult to say
precisely which are better, one general trend that emerged was that
using 3 to 4 attributes would not necessarily give better results than
using 1 to 2. As a matter of fact using four properties (properties 1,
2, 4 & 5) gave the worst result with a lot of mixing early in the
processing. This was somewhat surprising as one expected that the
greater the number of attributes the more is the information available
for clustering. Since using more attributes increases the processing
time substantially, these results suggest that one could achieve about
the same quality results and save processing costs by carefully choosing
a fewer number of attributes.

Figure 6.2.2 shows the clustered descending components and the

spatially generalized file for properties 1, 4 and 5. This image has
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St Lale

Clustered Image Generalised Image

Figure 6.2.2. Descending components clustering on photo band
of M4A. Properties 1, 4 and 5. Fourteen
Clusters.
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Clustered Image Generalised Image

Figure 6.2.3. Descending components clustering on photo band
of M4A. Property 2. Three Clusters.
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fourteen groups. Out of the fourteen, eight groups contained two or
less regions. Of these eight, three are large flat areas while the
others can be considered noise. Thus, effectively, the results shows
six textured areas. This was one of the few images in which the trailer
court came out separate, but as can be seen both it and the residential
area are quite broken. Further clustering only resulted in merging
these two categories together. One thing to note here is that the
pattern of some of the small groups in the residential area, corresponds
to the Tight and dark shading within the same area. This pattern was
also noted in a few other runs. This suggests that in these cases,
because of its coarse two level texture, some of the primitives of the
residential area are being treated as the flat fields; i.e. they are
being clustered separately.

Figure 6.2.3 shows the corresponding result of using only the
maximum gray tone property (property 2). The 536 primitive regions have
been reduced to three groups here. No size information was used. The
trailer court has merged with parts of the residential area as in Figure
6.2.1, and the bright field just above it. These are areas of similar
brightness on the image. The dark fields also come out together along
with some darker patches of the residential zone.

Finally figure 6.2.4 shows two iterations using the average gray
tone property. These images contain seven and four clusters
respectively. Of the four one is a small single region pixel. In
general there is good separation between the texture classes.
Unfortunately the orchard area at the bottom left has been labelled as

residential, and the definition of the trailer court leaves a little
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more to be desired.

Next we look at the ascending components.

The results with the ascending components are poorer compared to
the descending components. There are two reasons for that. First is
the poor spatial definition by the ascending component primitives for
the texture classes. A lot more of the pixels fell into the non-unique
area and there was larger separation (black area in Figure 3.4.7b)
between the primitive regions. Some areas like the top left regions
hardly have any primitives. This of course would lead to inaccurate
spatial generalization. The second problem resulted in poor clustering.
In many runs there was considerable merging and mixing of primitives
of different classes. As this was noticed quite early in the
clustering processes, when the clustering thresholds are much lower, it

seemed that the algorithm was having difficulty achieving good i

separation. The problem was that the minimum gray tones for a lot of f
the regions were zero. Thus they were indistinguishable on this b{
measure. These regions were about all equally dark. For the descending !
components the corresponding property of maximum gray tone had a much
wider variation. Some of the larger flat areas did emerge when the size *
property was included. However the residential part was still mixed. ]
One item that did come out consistently was the exit ramp road, but by I
later stages of clustering it was usually incorporated with the
residential area.

Two results for the ascending components are shown in Figures 6.2.5
and 6.2.6. The first is based on the average gray tone (property 5) and

has seven clusters. Of these, two contain two or less regions. Some
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Clustered Image Generalised Image

Figure 6.2.5. Ascending tomponents clustering on photo bahd
of MAA. Property 5. Seven Clusters.
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Clustered Image Generalised Image

Figure 6.2.6.  Ascending components clustering on photo band
of MAA. Properties 2, 3 and 5. Four
Clusters.
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definition has been obtained for the trailer court but it is quite poor.
Most of the image has been classified as residential including the
fields. The second result in Figure 6.2.6 is based on properties 2, 3
and 5. There are four clusters. There is a lot of merging of the flat
texture areas and again the flat fields did not separate out.

Clustering was also attempted on the radar band for image M4A.
While it was consistent with the image information, the results were not
as good as those from the photo image. As can be seen from Figure
3.4.1a, the radar image was quite dark in places. This fact is verified
by looking at the local and true extrema of the radar band in Figure
6.2.7. The minima are red, maxima green and the transition yellow. The
flat areas for the local extrema image are black. There is a large flat
(with gray tone 0) area bottom right. The correspcnding reachability
sets are shown in Fiqgure 6.2.8. The number of regions is smaller
compared to the photo image extrema but the average size of regions is
much 'arger. The number of descending and ascending components is 423
and 316 respectively.

The image is quite poor and as a matter of fact there is not too
much texture one can determine from it. Clustering was only performed
on the descending components image. The ascending components were based
toc much on parts of the image which had zero gray tone and did not seem
too useful. Two results are shown in Figure 6.2.9 and 6.2.10. Again
these images suffered from poor spatial definition for the texture
classes. Also the residential area took too long to cluster causing it
consistently to merge with the trailer court. Figure 6.2.9 shows the

results using the size and maximum height properties (properties 1 & 2).
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(a) Local (3x3 window) (b} True

Figure 6.2.7. Relative maxima (green) and minima (red) for
the radar band of M4A.

(a) Descending Components (b) Ascending Components

Figure 6.2.8. Unique reachability sets for the radar band
of M3A. 423 and 316 regions respectively.
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Clustered Image Generalised Image
(a) Ten Clusters. ’

Clustered Image Generalised Image
(b) Three Clusters.

Figure 6.2.9. Descending components clustering on radar band
of MAA. Properties 1 and 2. Two iterations.

Clustered Image Generalised Image

Figure 6.2.10. Descending components clustering on radar band
of MAA. Property 2. Three Clusters.
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Two clustering iterations are shown. The first shows ten classes while
the second three.. The trailer court has emerged in the first image but
it is still merged with parts of the residential area. Just a little
more clustering yields the three class image. Even though there is a
large amount of mixing, the shapes of the areas do match with the more
distinct areas of the radar band.

Figure 6.2.70 is a little better result again with three classes.
This is based on the maximum gray tone property. The match up between'
it and the high reflectance (bright) areas on the radar band is very
close.

The radar band was quite disappointing for M4A. Some pre-
processing attempts to enhance the radar band were also made. In one
an equal probability quantization to 32 levels was done. While the
image looked sharper, there was no significant change in the clustering

results.

6.3 Processing Image 'M3A'

Subsection M3A extracted from the third ETL image is also 128 x 128
in size. It is over a section of the city of Fremont, Ca. and contains
a residential area for the most part. The bottom right quadrant
contains a creek {Alameda Creek) and there are some gravel pits in the
bottom parts of the image. Across the top left corner of the picture
is a railway line and a road. There are some subtle changes in texture
of the residential class and it was hoped that the algorithm would pick
them up.

The two bands of the subsection are shown in Figure 6.3.1, with the

local and true extrema in Figure 6.3.2. Again the minima are red,
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i maxima green and the transition region yellow. The black in the local
extrema image is the flat pixels. There are 483 maxima and 450 minima
for the photo band of M3A. The descending and ascending components can
be seen in Figure 6.3.3.

It turned out for M3A the ascending components gave better results

o over the descending components. A major reason for this was the better

spatial definition of the different areas of the image by the ascending

components. The gravel pits which are dark are almost completely missed
by the descending components, but were picked up fairly well by the
ascending components. One of them just below the center was not picked
up by either set as it did not contain an extremum of either kind. The
pits gave rise to the same problems encountered for the fields of M4A.

Again we are using one or two primitives to define a 'texture' class.

The problem is exaggerated as the size of these regions is larger and

there are more of them. Furthermore the clustering ran into the problem

here that even though the pits are all the same class, their sizes

e —

differed tremendously. Thus when the size attribute was used, the
regions usually remained separate. Grouping only took place when the
size was not included. This is an example of an attribute acting
detrimentally. Size and shape properties for these large regions are
also affected by picture edges and thus would be questionable to use.
For example the pit at the bottom right is cut by the picture edge and

has an artifical shape.

The creek also presented similar problems, though it is easily
apparent to the eye. Again it has very little texture and very few

extrema that define it. An examination of Figure 6.3.3 shows that we
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(a) Radar band (b) Photo band

Figure 6.3.1. Image M3A. Size 128x128.

(a) Local (3x3 window) (b} True

Figure 6.3.2. Relative maxima (green) and minima (red) for
the photo band of M3A.

(a) Descending Components (b) Ascending Components

M3A. 483 and 450 regions respectively.
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Figure 6.3.3. Unique reachability sets for the photo band of
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pick up more of the bank than we do of the river, owing to its brighter
definition.

Processing with the size and maximum height properties on the
descending components, which were the best for M4A, is shown in Figure
6.3.4. This 1s quite poor as there is very little definition for the
major regions. The result is the uncontrolled growth of some of the
clusters into the large unclassified area of the gravel pits and the
river regions. The image contains eight clusters. A better picture is
shown in Figure 6.3.5. Based on the average gray tone property this
image has four cl@~ters. There is still not a good definition of the
pits but some uistinction nas been achieved for the slightly differing
areas of the residential part. The school area which is the bright spot
just left of the center of the image was kept quite separate from the
rest of the residential tract, but unfortunately was confused with the
bright levels of the river region.

Two examples of processing with the ascending components are shown
in the next two figures. Figure 6.3.6 shows seven groups based on the
number of levels and the average qray tone properties. The definition
of the pits and the river is much better. However merging has taken
place with parts of the residential zone. Figure 6.3.7 shows the
results of using three properties: maximum level, minimum level and the
average level. It is similar to the previous one but was unable to get
all the pits together. There are eight classes on this image.

Processing on the radar band was also performed for this image.
For comparison Figures 6.3.8 and 6.3.9 show the lacal and true extrema

and the corresponding reachability sets. As before there are fewer
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. Clustered Image Generalised Image

Figure 6.3.4. Descending components clustering on photo band
of M3A. Properties 1 and 2. Eight Clusters.
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Figure 6.3.5. Descending components clustering on photo band
of M3A. Property 5. Four Clusters.
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Clustered Image Generalised Image

Figure 6.3.6. Ascending components clustering on photo band
of M3A. Properties 4 and 5. Seven Clusters.
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Clustered Image Generalised Image 1

Figure 6.3.7.  Ascending components clustering on photo band
of M3A. Properties 2, 3 and 5. Eight
Clusters.
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(a) Local (3x3 window) (b) True

Figure 6.3.8. Relative maxima (green) and minima (red) for
the radar band of M3A.

(a) Descending Components (b) Ascending Components

t

Figure 6.3.9. Unique reachability sets for the radar band of
M3A. 274 and 226 regions respectively.
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Clustered Image Generalised Image

Figure 6.3.10. Ascending components clustering on radar band
of M3A. Property 2. Four Clusters.
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number than those from the photo band and the sets are larger in size.
The image contains 274 descending and 226 ascending components. The

processing results were not very impressive. One example is shown in
Figure 6.3.10. It is based on the maximum gray level on the ascending

components image. It has four classes. Only a few major areas can be

identified.

6.4 Processing Image 'MGA'

M6A is a subsection of the sixth ETL image. This image is over a
section of Qakland, Ca. and is 200 x 200 pixels in size. The image is
shown in Figure 6.4.1. Owing to its larger size, it and all of its
processed results were viewed at half the scale (on the TV monitor),
compared to images MAA and M3A. The image was chosen to see how well
the algorithm could distinguish between different man-made textures.
The picture contains some houses in city blocks at the top. These show
as fine texture in the top area and other parts of the image. Two
railway lines run across the bottom part and are surrounded by large
buildings.

Figure 6.4.2 shows the local and true extrema. In Figure 6.4.3 we
have the reachability sets. There are 1152 maxima and 1146 minima
regions for the photo band. An interesting fact was noted in the local
extrema image of Figure 6.4.2. In the original image the city blocks
are defined by streets which run at an angle of about 23 degrees east
of the vertical. In the local extrema image this inclination is not
apparent. Instead there is a slight pattern of straight lines about 6
degrees west of the vertical! The pattern disappears in the true

extrema image with the pattern of the original inclination reappearing
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(b) Photo band

Figure 6.4.1. Image M6A. Size 200x200.

(a) Local (3x3 window) (b) True

Figure 6.4.2. Relative maxima (green) and minima (red) for
the photo band of M6A.

T

(a) Descending Components (b) Ascending Components

Figure 6.4.3. Unique reachability sets for the photo band of
M6A. 1152 and 1146 regions respectively.
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siightly. The original pattern is readily apparent in the reachability

set images. There was no clear explanation for this.

Some examples of processing with the descending and ascending
components are given in the next set of figures. Figure 6.4.4 shows the
results of processing attributes 1 and 2, the size and maximum height.
This is on the descending components image. There are thirteen clusters
shown on this. Of these seven contain eight or fewer regions out of the
original 1152 regions. Figure 6.4.5 shows the clustering process which
used only the maximum height property. The picture has five classes.

In both of these the city blocks come out pretty well as they constitute
a well defined texture. Few individual buildings were also
distinguishable. The railway lines which were so well defined on the
reachability sets were however always lost. They merged with the
residential area no matter which properties were being used. These and
other linear features are hard to extract, as it is hard to define
texture on them. Using shape and orientation features could perhaps
keep them separate.

In Figures 6.4.6 and 6.4.7 we have two runs on processing the
ascending components. The first was on four properties: size, maximum
height, number of levels and the average aray tone. It has sixteen
classes of which ten consisted of four or fewer regions. The railway
1ines were again absorbed by the residential class, but the buildings
between them were quite distinct. Figure 6.4.7 shows a clustering
example with ten classes, based on the maximum, minimum and the average
level properties. Five of these are small clusters. The residential

area is still two sections which correspond in part to the finer and
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Descending components clustering on photo band
Property 2.

of M6A.

Figure 6.4.5.
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Generalised Image

Figure 6.4.6. Ascending components clustering on photo band
of MBA. Properties 1, 2, 4 and 5. Sixteen
Clusters.
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Figure 6.4.7.  Ascending components clustering on photo band b
of M6A. Properties 2, 3 and 5. Ten Clusters.
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coarser textures of that domain.

No processing was done with radar band for this image.

6.5 Processing Image 'MIA'

The fourth image presented here is from the first ETL image. It is
again 128 x 128 pixels in size. The image is located at the southern
tip of Crystal Springs reservoir, west of San Carlos, Ca. It was chosen
for its wooded hillside or forest textures which cover most of the top
and left parts of the image. In the bottom right quadrant there is a
beach and a little bit of the lake. Between the beach and the hillside
is another swath of land refered to here as the upper beach. It
contains a lighter density of trees and is a Tow lying area of the
hillside.

Both the radar and pheto bands were processed. Owing to the
different acquisition dates the radar image shows a larger water area
than the photo image. This can be seen in Fiqure 6.5.1 which shows both
these bands. Figure 6.5.2 shows both the local and true extrema for the
photo band, while Figure 6.5.3 shows the reachability sets. There are
670 descending and 593 ascending components on this image.

The image is quite difficult to analyse as the changes in the

texture of the forest if any are quite subtle. Also parts of the photo !
image are quite dark making it hard to see certain regions. The E
algorithm performed quite well however. The radar band on this image

is quite bright, a fact which is reflected in the processing of that

data.

On the photo band the ascending components clustering was not too

good and the best result obtained is shown in Figure 6.5.4. This image




(a) Radar band (b) Photo band

Figure 6.5.1. Image MIA. Size 128x128.

(a) Local (3x3 window) (b) True

Figure 6.5.2. Relative maxima (green) and minima (red) for
the photo band of MIA.

(a) Descending Components (b) Ascending Components

Figure 6.5.3. Unique reachability zets for the photo band of
MIA. 670 and 593 reqions respectively.
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has seven classes. The clustering was done using the size and maximum

height properties. Most of the area came out as one class. The sea was

merged with the forest as they are both equally dark. Only the

immediate beach came out as one separate class. The upper beach is R |

patchy. The few isolated regions in the forest correspond to the large
~ size ascending components regions (see Figure 6.5.3). They could §

not be clustered with the many smaller sized regions of the forest

area.

The descending components clustering was quite good except for the
sea which came out in two parts. Two iterations are shown in Figure
6.5.5. These are based on the maximum height attribute. In Figure
6.5.5a there are six classes. These reflect quite closely the different

" regions of the image. The forest area is in two parts. The light blue

} on the green correspond to the bright ridges that can be seen on the
photo band. The upper beach came out quite well, while the main beach

g is in two segments. Only the sea was poor. As may be seen from the

’ descending components image (Figure 6.5.3), there are very few

primitives defining the dark flat area. This is of course the same

problem encountered in previous images. 3

In the next iteration, Figure 6.5.5b, the forest has been reduced

to one category. This image contains four classes. The sea is still

Sl it g -

broken and now partly merged with the forest as they are both guite

dark. Overall though it is a good match up on shapes of the classes.
While the radar results are not as pleasing as those from the photo

band, the algorithm again performed well. As mentioned before the radar

image was taken at a different date and shows more water. The beach and
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Clustered Image Generalised Image

Figure 6.5.4. Ascending components clustering on photo band
of MIA. Properties 1 and 2. Seven Clusters.
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Clustered Image Generalised Image
(a) Six Clusters.

Clustered Image Generalised Image
(b) Four Clusters.

Figure 6.5.5. Descending components clustering on photo band
of MIA. Property 2. Two iterations.
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the upper beach areas are not distinct at all. Furthermore it is quite
noisy. This actually was good as it resulted in many more extrema than
the photo band, enabling us, among other things, to get a better
definition of the sea area. Figure 6.5.6 shows these and in Figure
6.5.7 we have the corresponding reachability sets. There are 813 maxima
and 881 minima in this band.

In Figure 6.5.8 we have the clustering based on the size and the
maximum height property for the descending components of the radar band.
This image has five groups. It is hard to separate different texture
regions on this band. The different colors here show more the different
brightness levels as there is not too much variation in the sizes. The
match is fairly good. The light blue and green correspond to the
brighter areas, while the purple and pink correspond to the much darker
regions. The sea here has more body, but is still merged with the dark
areas of the forest.

Figure 6.5.9 show another clustering session on the descending
components. This is based on the minimum gray level attribuée. There
are four classes in this image. It turned out a little better. Again
the green and Tight blue are the brighter tracts and the purple the
darker ones on the radar image.

Finally in Figure 6.5.10 we have a result on processing the
ascending components for the radar data, based on the maximum height
property. This image also has four classes. It is not as good as the

previous one as the definition of the sea is bad. However the shading

patterns of the forest are still represented faithfully.
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(a) Local (3x3 window) (b) True

Figure 6.5.6. Relative maxima (green) and minima (red) for
the radar band of MIA.

(a) Descending Components (b) Ascending Components

Figure 6.5.7. Unique reachability sets for the radar band of '
MIA. 813 and 881 regions respectively. .
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Clustered Image Generalised Image

Figure 6.5.8. Descending components clustering on radar band
of MIA. Properties 1 and 2. Five Clusters.
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Figure 6.5.9. Descending components clustering on radar band
of MIA. Property 3. Four Clusters.
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Clustered Image Generalised Image

Figure 6.5.10. Ascending components clustering on radar band
of MIA. Property 2. Four Clusters.
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7.0 CONCLUSION AND RECOMMENDATIOQNS

In the last few chapters we looked at a few techniques which used
image extrema and the reachability set primitives for quantifying
texture. Our goal was to examine the properties of these primitives and
develop schemes to segment images based only on texture. To this end
the experiments of Chapters 4 and 6 were quite successful, although not
without problems. In this final section we will briefly review some of
these problems and at the same time Took at suggestions for further
work.

Segmentation based on the density images of Chapter 4 is not very
evident and it wasn't expected to be. The extrema density is a weak
texture measure and is unlikely it will give rise to good direct
segmentation. It does however separate regions of fine and coarse
texture quite well and has been successfully used in texture
discrimination experiments (Mitchel et al 1977, 1978). The main aim
here was to see how well it suited up to other measures such edge
density, and was found to be generally comparable. Its main
segmentation application lies mainly as a texture discriminator band in
a multispectral clustering process. Its advantage Ties in the fact that
it is fast and straight forward to generate.

The properties of the primitives turned out to be more useful for
segmentation. The overall results of clustering based on the property
values of the primitives were quite good. The examples of Chapter 6
show the procedure worked very well in separating regions of different
texture, but had difficulty with the flat homogeneous areas of the

image. As mentioned before this is partly due to the fact that we are
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trying to define the spatial domain of the flat region by one or two

primitives. The reachability set primitives were not intended for

this, as it is not really meaningful in the context in which we are :

using them. They are supposed to represent a primitive of the texture

component and not the region itself. Using it for the latter purpose

gives rise to problems. Not only do we have different spatial

definition on the dark and light fields using ascending and descending

components, but some of the properties (size, shape) are no longer

comparable with the texture region primitives. A1l this of course Teads

to errors in clustering and the spatial generalization process.

The inability of the process to handle the flat regions adequately

does not reflect badly on it when we remember that the aim was to use

the primitives to define components of texture. The uniform gray tone %
‘ areas are really regions of no texture and do not fall into the main ﬂ

class of items we wanted to study.

The flat region problem is not unsolvable. The most direct method
would be to extract the low texture homogenous tone areas by spatial
clustering. There are several ways to do that, Singh (1977) being one
such scheme. Once this is done, the texture image can be segmented

without the homogenous regions. The latter may then be merged with the

segmented picture, either as is or after clustering has been performed
on them. This clustering would be on the tonal properties of the flat
regions. The merging would yield the final classified image.

Another way to tackle this problem is by the use of noise. The
trouble with the flat areas is that there are very few local extrema and

the few that there are result in large ungainly reachability sets. By
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adding a little noise to these regions, we seed the flat area with
artificial extrema. This not only increases the number of extrema but
also breaks up the original large reachability sets into smaller ones.
The size of these would be a function of the spatial distribution of the
noise pixels. This approach is very well illustrated for the sea region
for the photo and radar bands of MIA (Figures 6.5). The radar band is
quite noisy compared to the photo band and the resulting extrema break
up the sea into many small reachability sets. This gives a better
spatial definition for the sea which was lost for the smoother photo
band.

A more complex problem is the one of two Tevel textures. This
refers to regions which contain two types of textures or in which the
textured is two-layered. An example of this would be fine micro texture
areas arranged in some manner to form a coarse macro texture region.
Another example would be a texture component which consists of an
arrangement of a set of three or more light and dark shapes. These sets
are arranged over a region to give it its texture. The reachability
sets may capture each of these shapes separately when they actually
should be treated together. During the clustering the different
subshapes of each set will cluster with the corresponding subshapes from
other sets. The segmented image will then show the texture region
broken according to the pattern of these subshapes, rather than as one
region as we would like. The problem involves defining not only the
dimensionality of the texture but also size of the basic texture
component. It is partly one of choosfng the correct resolution level.

To some degree it can be solved by increasing the thresholds in the
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clustering, but there is no guarantee in that. At some stage either at
the beginning or on the clustered-segmented image, spatial and global
techniques will have to be applied.

This problem of two level textures was not tackled here and is one
area for further research. About the only example encountered was the
residential area of the M4A. From a broad point of view it represents
a coarse texture area. However on closer examination it shows a pattern
of light and dark shapes. It was noted during most of the processing
runs, that this entire region broke into three or four classes and only
at a very late stage in the clustering did it reduce to a smaller
number. The three of four classes pretty much followed the arrangement
of the shapes, giving the segmented image a patchy appearance.

There are two other points which need further mentioning. One is
the use of the spatial generalization process as this is a potential
source of error. As discussed in Section 6.1 classification errors may
result if in an area the number of extrema are few and the distances
between them Targe. The spatial generalization could then generate an
artificial growth pattern giving rise to errors in classification. One
such type of area we have already encountered are the flat no texture
regions of the image. However on closer examination, other areas with
slowly varying graytones also exhibit a similar pronerty. They have few
extrema placed far apart, with the result that a lot of pixels fall into
the non-unique reachability class. These are all regions with low
texture some of them being uniform slopes. A more controlled growth
process is then needed for such regions, one that is guided by the

sloped facets and flats of the image. This would however slow the
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growing operation.

The second deals with the number of attributes used in the
clustering. As pointed out earlier, one of the facts that emerged was
that using three or four attributes did not necessarily improve the
result over using one or two. The choice of the attributes here is of
course important but the result is still surprising. The original
hypothesis was that by increasing the number of attributes, we should
do no worse. However this did not hold out. The reasons for it are not
clear and need to be established. This is important if we want to
optimise the clustering performance. Balance has to be achieved between
choosing enough attributes to be able to discriminate between
categories, and at the same time keeping this number small for
computational efficiency.

A natural extension for using the extrema primitives has been
described in Section 5.4. This would be based on the work of Davis et
al (1979) and uses the extrema in the framework of a strong texture
measure. Davis et al used local maxima edge points with directional
properties to generate Generalised Co-occurence Matrices (GCMs). These
were shown to be more powerful than the regular gray level co-occurence
matrices for texture discrimination. It is felt that GCMs based on the
extrema primitives with the attributes of Chapter 5, should work just
as well if not better.

The results of this project show that the extrema and their
derivatives are useful tools for texture analysis. They were used

successfully for both image discrimination as well as segmentation.

1
Further work however is necessary to reduce errors in classification and
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j ‘ eliminate the problems encountered.
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APPENDIX A

COLOR TABLE FOR CLUSTERED IMAGES OF CHAPTER 6. :

The list below gives the colors used to show the different classes
of the clustered images of Chapter 6. There are twenty colors for .upto

twenty cluster codes. If an image has more than twenty classes, cluster

K- B AR Ay

f codes twenty and higher have the same color.

g
; 1 - Light Green 11 - Red
; 2 - Light Blue 12 - Ochre
| ‘ 3 - Purple 13 - Yellow Green :
4 - Pink 14 - Dark Green %t
i} ' 5 - Orange 15 - Blue Green bf
6 - Yellow 16 - Dark Purple H
7 - White 17 - Dark Red
? 8 - Green Blue 18 - Dark Orange 1
| 9 - Dark Blue 19 - Dark Yellow Green %;
.0 - Light Purple 20 - Dark Gray L

RS L
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APPENDIX B

IMAGES USED FOR CLUSTERING EXPERIMENTS.
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Image:

Source:

Image Size:

Subsection Coordinates
from ETL Image
First & Last Rows:
First & Last Cols:

Acquisition Dates

Photo Band:
Radar Band:

Approximate Geographic: Section of Union City,
North of Newark, Ca.

Location

MaA

ETL files 7 & 8

128 x 128 pixels

257 to 384
321 to 448

21-0ct-71
16-Mar-71

Image histograms on following pages.
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Image: M3A

Source: ETL files 5 & 6

Image Size: 128 x 128 pixels

Subsection Coordinates
from ETL Image

First & Last Rows: 65 to 192
First & Last Cols: 65 to 192
Acquisition Dates

Photo Band: 21-0Oct-71
Radar Band: 16-Mar-71

Approximate Geographic: Section of Freemont, Ca.

Location

Image histograms on following pages.
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Image:

Source:

Image Size:

Subsection Coordinates
from ETL Image
First & Last Rows:
First & Last Cols:

Acquisition Dates

Photo Band:
Radar Band:

Location

Approximate Geographic: Section of Oakland, Ca.

M6A \
ETL files 11 & 12

200 x 200 pixels

1 to 200
313 to 512
}
21-0ct-71 4
16-Mar-71 1
;
Image histograms on following pages. 5
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Image:

Source:

Image Size:

Subsection Coordinates
from ETL Image

First & Last Rows:
First & Last Cols:
Acquisition Dates

Photo Band:
Radar Band:

Approximate Geographic:

Location

M1A

ETL files 1 & 2

128 x 128 pixels

129 to 256
385 to 512

25-Nov-75
15-0ct=~74

Southern tip of Crystal Springs

resevoir, West of San Carlos, Ca.

Image histograms on following pages.
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1 IR 22X 222222 X RL TR 1

1 Irrnhardhhihhrhesrn 1
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; 12 35 58 82 105 }
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APPENDIX C

COMMAND DUCUMENTATION FOR TEXTURE PROGRAMS.

All the software for the texture project was written in KANDIDATS
format. KANDIDATS is an interactive image processing system developed
at the Remote Sensing Laboratory, at the University of Kansas Center for
Research. It is a general purpose system designed to allow users with
an interest in image analysis, an easy access to a large number of
processing operations. The system has been well documented (Johnson,
1974; Bryant, 1976; Singh, 1977), and only a brief discussion of some
of the features is included here, to help explain the documentation that
follows.

It should be noted that one of the main features of KANDIDATS is
its modular structure. This and the fact that most of KANDIDATS is
written in standard Fortran, makes for easy maintenance, modification
and transportability of the package. Only some system support routines,
such as disk initialisation and I/0, which are particular to a site, are
written in assembly language.

Each algorithm or image operation in KANDIDATS is set up as a
command. It is input into the system as a command string, which is
described below. All the data, whether images or data files, are stored
on disk and are referenced by file names. The command string contains,

1long with the operation, additional information that is necessary to
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perform the command. This includes the file names of the images to be
operated upon and the optional flags for the command. The command
string is decoded by the command string interpreter and the KANDIDATS
monitor then calls the required routines to execute the algorithm.
f, Each command string has the same simple form and contains basic

information in the following sequence.

1) The name of the operation.

2) The destination device name.

3) The file name for the output image.

4) Optional flags.

5) The source device name.

6) The file names (up to 3) for the input image(s).

7) Optional flags.

This results in the following general command format:

KAN> VERB DEST OTFILE (FLAGS) _ SOURC INFILE(S) (FLAGS)

where: !
|
KAN> are the KANDIDATS prompt characters. !

) VERB is the command to be executed.

{

: DEST is the destination device name, if needed. 5
K
OTFILE is the output file name. 3
} (FLAGS) is a list of alphabetic characters in parenthesis. ﬁ
7 The appearance of each letter in the list causes the i
. corresponding logical flag (in an array of upto 26 i
# such flags) to be set. The meaning of each flag is Q
g defined by the individual command. Flags are always s

s optional.

is the delimiter between the destination and
source halves of the command.

SOURC is the source device name, if needed.

INFILE(S) are the input files. Up to three are allowed,
separated by spaces or commas.

(FLAGS) is the same as the first set of flags.
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Some commands do not require all the information described in the
general format. In those cases the irrelevant information is omitted.
Examples of command strings for the various operations are included in
the documentation below.

The images on disk are also maintained in KANDIDATS format, refered
to as Standard Image Format or SIF files. This establishes a common
data structure that allows KANDIDATS commands to access images created
by other commands, with minimum user interaction. A SIF file contains
an identification block for the image, a set of history records and the
image data. It is also set up to accomodate both picture (numeric
image) as well as map (symbolic image) data.

The identification block contains all the basic information about
the image such as size, number of bands, mode, minimum and maximum gray
tone etc. For each operation performed on the image a set of history

or descriptor records are added, which become part of the image file.

These describe the operation that was applied to the image and any

relevant parameters that were used. By listing these out, the user has
a full description of the operations carried out on the image. The
documentation to follow includes a description of this information that
is added by each command. A more detail discussion of a SIF file is
given in Bryant (1976).

For the texture programs another data structure was established.
Called a property file, it is basically a sequential disk file, set up
to hold properties of regions. Its format is as follows. TFor 'N'
regions and 'M' properties, the length of the file is 'N+2' records,

each of size 'M' words. Records '3' through 'N+2' hold the 'M' property




|

i i : !

values for each of the 'N' regions of the image. Examples of these are
the size of regions, center of mass coordinates or the properties i
described in Chapter 5.
The first word of the first record is always theAQize ('M') of the i
records. If it is greater than one, the rest of the entries are zero.
Record two was included to hold any relevant information that we may
want to keep track off. It usually contains the input band number of
the image that the property file was generated from.
All the sequential data for the texture package is stored in the

above format. This allows for easy examination of the contents of the

files by the PRPRT command.




Command: MRKNX

Action: Mark the minimum, maximum, transition and flat pixels,
using the 3 x 3 neighborhood.

Destination: Diskpack, output image filename.

Source: Diskpack, input image filename.

Flags: None.

Questions: Band of the input image to use, if more than one.
Comments: A cell is marked according to the following rule:

Mark = 0, if all the cells in the 3 x 3 neighborhood
have the same values.

1, if the center pixel is a local minimum.

2, if the center pixel is a local maximum.

3, if none of the above apply.

The input SIF file must be in line format.

Command String Example:
KAN> MRKNX DP FILEOTSIF _ DP FILEIN SIF

The local 3 x 3 local extrema of file FILEINSIF will
Y be cetected and stored in FILEOTSIF.

Desc. Records: Name record:
MRKNX MM/DD/YY HH:MM FILEOTSIF
FILEINSIF

Parameter record: One integer record. !

: Integer record: !
Entry #1 Band of the input file processed.
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'3,
format.

Command String Example:

Desc. Records: Name record:

FILEN1SIF

Integer record:
Entry #1
Entry #2
Entry #3

Command: MNMX8
Action:
an image.

Destination:
Source:
Flags:

files 1 and 2.

bands from
Questions: Bands of input
Comments:

KAN> MNMX8 DP FILEOTSIF _ DP FILENI1SIF FILEN2SIF

MNMX8 MM/DD/YY HH:MM FILEOTSIF

Parameter record:

Mark the minimum, maximum and transition regions of

Diskpack, output image filename.
Diskpack, input image filenames (two).

(S) Select either symbolic or numeric bands from input

Default is to select only numeric
file 1 and symbolic bands from file 2.

images to use, if more than one.

Input file 1 is usually a numeric image and input file
2 is usually the output result of command MRKNX
applied to file 1.
maxima flats '2' and the transition region pixels with
Both input and output files are in SIF line

Minima flats are marked with '1’',

FILEN2SIF

One integer record.

Band of input file 1 processed.
Band of input file 2 processed.
Number of scans necessary to mark
the image.




Command:

Action:

Destination:
Source:

Flags:

Questions:

Comments:

LBLCT

Label pixels in maximal connected regions with unique
values. All pixels in a user selected category
receive labels.

Diskpack, output image filename.
Diskpack, input image filename.

(B) Set beginning label.
(C) Recopy output file to optimize number of bits.

Band of input file to use if more than one.

The output file is a set of uniquely labeled regions

with no mutually adjacent cells between two different
regions. Both input and output files are in SIF line
format.

Command String Example:

Desc. Records:

KAN> LBLCT DP FILEOTSIF _ DP FILEINSIF
LABEL REGIONS MARKED WITH -- 2

All the maximallly connected regions of file FILEINSIF
which have a label '2', will be given unique labels.

Name record: “
LBLCT MM/DD/YY HH:MM FILEOTSIF l.;,
FILEINSIF

Parameter record: One integer record.

Integer record:
Entry #1 Band of input file processed.
Entry #2 Beginning label for output file.
Entry #3 Maximum label.
Entry #4 Number of labels. i
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Command:

Action:

Destination:
Source:

Flags:

Questions:

Comments:

REACH

Grow either the minima or maxima labels over their
reachability sets.

Diskpack, output image filename.
Diskpack, input image filenames (two).

(A) Ascending reachability from labeled minima.

(D) Descending reachability from labeled maxima.

(S) Select either numeric or symbolic bands from input
files. Default is to select only numeric bands
from file 1 and symbolic bands from file 2.

Bands of the input images to use, if more than one.

Flags (A) and (D) are mutually exclusive.

Flag (A) - ascending reachability expects input file 1
to be a numeric band and file 2 to be a symbolic band
of the uniquely labeled minima regions of file 1.

Flag (D) - descending reachability expects file 1 to
be a numeric band and file 2 to be a symbolic band of
the uniquely labeled maxima regions of file 2. Both
input and output files are in SIF line format.

Command String Example:

Desc. Records:

KAN> REACH DP FILEOTSIF _ DP FILEN1SIF FILEN2SIF (A)

The ascending reachbility sets will be computed and
stored in FILEOTSIF.

Name record:
REACH MM/DD/YY HH:MM FILEOTSIF
FLEN1SIF FILEN2SIF

Parameter record: One integer record.

Integer record:
Entry #1 Band of input file 1 processed.
Entry #2 Band of output file 2 processed.
Entry #3 Number of scans necessary.
Entry f##4 Overlap label.
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Command: FRCNT

Action: Generate the frequency (size) counts of regions in a
symbolic image.

Destination: Diskpack, output property file filename.
Source: Diskpack, input image filename.
Flags: None.
Questions: Band of input image to use, if more than one. '
Comments: The frequency counts are stored on disk as a property
file. The length is 'N+2', where 'N' is the number of
categories in the image. The first record contains a M

*1'. The second holds the band number of the input
image that was processed. It is assumed that each
region is labeled and that they are labeled
consecutively (this is true for output by the LBLCT
command) .

P EAR TR,

Command String Example: :
KAN> FRCNT DP FILEOTSEQ _ DP FILEINSIF i

FILEOTSIF is a sequential data file and not a SIF
image. It holds the sizes of the different regions of
FILEINSIF.

Desc. Records: Not applicable.

1 3
; ?
4
|
i
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Command:

Action:

Destination:

Source:
Flags:

Questions:

Comments:

DSTWT

Distribute a weight over the regions of an image.
Diskpack, output image filename.

Diskpack, property and input image filenames.
None.

Band of input image to use, if more than one.
Weight to be distributed.

If the weight entered is 'W', each pixel in a region
of size 'f' will get a value of about 'W/f'. For
example if W=100 and f=3, the three pixels will get
values of 33, 33 and 34. The input property file is
usually the output of the 'FRCNT' command. The
property file should have been generated from the
input image band used for this command.

Command String Example:

! Desc. Records:

KAN> DSTWT DP FILEOTSIF _ DP FILEINSEQ FILEINSIF
ENTER WEIGHT TO BE DIVIDED -- 200

The weight 200 will be divided over the regions of
FILEINSIF according to the size counts specified in
FILEINSEQ.

Name record.
DSTWT MM/DD/YY HH:MM FILEOTSIF
FILEINSEQ FILEINSIF

Parameter record: One double integer record.

Double integer record:
Entry #1 Number of categories.
Entry #2 Minimum size value.
Entry #3 Maximum size value.
Entry #4 Weight specified.
Entry #5 Input image band number.
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Command: CMCNT

Action: Generate the center of mass coordinates for the
regions of an image.

Destination: Diskpack, output property file filename.

Source: Diskpack, input image filename.

Flags: None.

Questions: Band of input image to use, if more than one.
Comments: The center of mass coordinates are stored on disk as

a property file. The record size is two for the row
and column coordinates. The first word of the first
record is '2'. The second record holds the input
image band number.

Command String Example:
KAN> CMCNT DP FILEOTSEQ _ DP FILEINSIF

The center of mass coordinates of FILEINSIF are stored

in property file FILEOTSEQ.

Desc. Records: Not applicable.




Command: CMIMG
Action: Create a center of mass image.
Destinaton: Diskpack, output image filename.
;l Source: Diskpack, property and input image filenames.
7 Flags: None.
Questions: None.
Comments: Creates « . image with the labels at the center of mass

positions of the regions of the input image. The
property file should have been generated by the CMCNT
command for the image band specified. The image file
is necessary here to establish the size of the output
file.

Command String Example:
KAN> CMIMG DP FILEQOTSIF _ DP FILEINSEQ FILEINSIF

Desc. Records: Name record:
; CMIMG MM/DD/YY HH:MM FILEOTSIF
‘ FILEINSEQ FILEINSIF

Parameter record: One double integer record.

|

. Double integer record: Z
1 Entry #1 Number of regions. é
Entry #2 Band of input image processed. |

.




Command: RPCN1
Action: Generate a set of properties for the regions of an
image.
i Destination: Diskpack, output property file filename.
E Source: Diskpack, input image filenames (two).
; Flags: None.
é Questions: Band of input images to use, if more than one.
rﬁ Comments: The first file is the symbolic image file containing

the unique labels for the regions. The second file is
the numeric or gray tone image.

Five properties are extracted. They are:
1) Size of the region.
2) Maximum gray level.
3) Minimum gray level.
4) Number of levels.
5) average gray level.

These properties are stored in a property file with a
record size of five. The second record of this file
bolds the input image band numbers that were
processed.

Command Strihg Example:
KAN> RPCN1 DP FILEOTSEQ _ DP FILEN1SIF FILEN2SIF

Desc. Records: Not applicable.




Command: PRPWT
Action: Create a property image from property file data.
Destination: Diskpack, output image filename. ;
Source: Diskpack, property and input image filenames. L
Flags: None.

t;’ Questions: Band of input image to use, if more than one.

Property number to use from property file.
Multiplicative weight to use.

Comments: Each pixel of a region in the output image contains
a value equal to the property value for the region
times the multiplicative constant. The multiplicative
constant is used to give a larger dynamic range to the
‘ output image graytones. The property file should have
; been generated from the input image specified.

Command String Example:

1 KAN> PRPWT DP FILEOTSIF _ DP FILEINSEQ FILEINSIF
ENTER PROPERTY NUMBER -- 3

1 ENTER MULTIPLICATIVE WEIGHT -- 5

Property number 3 from the property file will be
chosen. Property values assigned to the regions will
be multiplied by 5.

Desc. Records: Name record:
PRPWT MM/DD/YY HH:MM FILEOTSIF
FILEINSEQ FILEINSIF

Parameter record: One double integer record.

Double integer record:
Entry #1 Number of categories.
Entry #2 Minimum property value. i
! Entry #3 Maximum property value.
X Entry #4 Multiplicative weight.
3 Entry #5 Band of input image that was processed.
| Entry #6 Column of property file that was processed.
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Command: PRPRT

Action: Display property values from property file.
Destination: Hardcopy, teletype (TT) or line printer (LP).
Source: Diskpack, input property file filename.
Flags: (B) Output a bar graph.
(C) Output for compressed mode on LP.
(D) No from feed for default, 'B' and 'T' flag options.

(E) Get first and last values to graph from user.
(H) Cutput a histogram.

(L) Use log scale in histogram.

(N) Get titles for graphs from user.

(P) Print property file values (Default).

(R) Graph only non-zero values.

(S} No shift in 'B' flag option.

(T) Output table of counts and probabilities.

Comments: This command allows for the display of property file
data in several forms indicated by the flag optioans
above. More than one form may be specified for one
command. All the properties in the property file will

i be displayed.

Command String Example: ;
KAN> PRPRT TT _ DP FILEINSEQ

Print the property values for each region to the
teletype.

KAN> PRPRT LP _ DP FILEINSEQ (BHNL)

Print property histograms and bargraphs to the line
printer. Ask user for titles for each property. Use
log scale for histogram.

Desc. Records: Not applicable.
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Command:

Action:

Destination:
Source:
Flags:

Questions:

Comments:

Command String Example:

Desc. Records:

TGR

Perform clustering on property values of a property
file.

Diskpack, output property file filename.
Diskpack, input property file filename.
None.

Frequency component in property file.

Number of components and their selection.
Ask for weighting each component.

Weighting by number of regions instead of by
region size.

Maximum number of groups desired.

Ask if data is to be standardised.

This command performs the Orbit clustering on the
property table. The output is a property file
containing the cluster codes for the regions of the
input property file. Record two contains the final
number of clusters. The program is interactive and
asks for thresholds for each iteration. The program i 3
also prints a trace of the processing by default, and r
intermediate results if requested, to the line :
printer. 1
'TGR' stands for Texture Grouping.

FREQUENCY COMPONENT NUMBER ? 1
NUMBER OF COMPONENTS ? 2
SELECTION 1 IS -- 3

WEIGHT THIS COMPONENT (Y/N) ? N F
SELECTION 2 IS -- 5

WEIGHT THIS COMPONENT (Y/N) ? Y

WEIGHT BY NO. OF REGIONS INSTEAD OF REGION SIZE (Y/N) ? Y
MAXIMUM NUMBER OF GROUPS DESIRED -- 5

STANDARDISE DATA (Y/N) ? N

|
KAN> TGR DP FILEOTSEQ _ DP FILEINSEQ r
i
i
!

R

The frequency component is the first column of the
property file. Clustering will be performed on
components three and five of the file. Component five
will be weighted by the number of regions in each
cluster. Clustering will continue till the number of
groups is five or less. Data will not be
standardised. Questions for thresholds and displaying
intermediate data will be asked during each clustering
iteration.

Not applicable.
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Command: RBL

Action: Relabel  symbolic image band according to the cluster
codes in a property file.

Destination: Diskpack, output image filename.

Source: Diskpack, input property and image filenames.

Flags: None.

Questions: Band of input image to use,if more than one.
Comments: The command is used to create images from the results

of the clustering operation. The first input file is
the cluster code file and the second is the
corresponding labeled file.

Command String Example:
KAN> RBL DP FILEOTSIF _ DP FILEINSEQ FILEINFSIF

Desc. Records: Name record:
RBL MM/DD/YY HH:MM FILEQTSIF
FILEINSEQ FILEINSIF

Parameter record: One double integer record.

Double integer record:
Entry #1 Number of original regions.
Entry #2 Number of clusters.
Entry #3 Band of input image processed.
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